102 resultados para Centre for Earth Sciences

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictions that result from scientific research hold great appeal for decision-makers who are grappling with complex and controversial environmental issues, by promising to enhance their ability to determine a need for and outcomes of alternative decisions. A problem exists in that decision-makers and scientists in the public and private sectors solicit, produce, and use such predictions with little understanding of their accuracy or utility, and often without systematic evaluation or mechanisms of accountability. In order to contribute to a more effective role for ecological science in support of decision-making, this paper discusses three ``best practices'' for quantitative ecosystem modeling and prediction gleaned from research on modeling, prediction, and decision-making in the atmospheric and earth sciences. The lessons are distilled from a series of case studies and placed into the specific context of examples from ecological science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring Earth material behaviour on time scales of millions of years transcends our current capability in the laboratory. We review an alternative path considering multiscale and multiphysics approaches with quantitative structure-property relationships. This approach allows a sound basis to incorporate physical principles such as chemistry, thermodynamics, diffusion and geometry-energy relations into simulations and data assimilation on the vast range of length and time scales encountered in the Earth. We identify key length scales for Earth systems processes and find a substantial scale separation between chemical, hydrous and thermal diffusion. We propose that this allows a simplified two-scale analysis where the outputs from the micro-scale model can be used as inputs for meso-scale simulations, which then in turn becomes the micro-model for the next scale up. We present two fundamental theoretical approaches to link the scales through asymptotic homogenisation from a macroscopic thermodynamic view and percolation renormalisation from a microscopic, statistical mechanics view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we discuss an advanced, 3D groundwater visualisation and animation system that allows scientists, government agencies and community groups to better understand the groundwater processes that effect community planning and decision-making. The system is unique in that it has been designed to optimise community engagement. Although it incorporates a powerful visualisation engine, this open-source system can be freely distributed and boasts a simple user interface allowing individuals to run and investigate the models on their own PCs and gain intimate knowledge of the groundwater systems. The initial version of the Groundwater Visualisation System (GVS v1.0), was developed from a coastal delta setting (Bundaberg, QLD), and then applied to a basalt catchment area (Obi Obi Creek, Maleny, QLD). Several major enhancements have been developed to produce higher quality visualisations, including display of more types of data, support for larger models and improved user interaction. The graphics and animation capabilities have also been enhanced, notably the display of boreholes, depth logs and time-series water level surfaces. The GVS software remains under continual development and improvement

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Webb et al. (2009) described a late Pleistocenecoral sample wherein the diagenetic stabilization of original coral aragonite to meteoric calcite was halted more or less mid-way through the process, allowing direct comparison of pre-diagenetic and post-diagenetic microstructure and trace element distributions. Those authors found that the rare earth elements (REEs) were relatively stable during meteoric diagenesis, unlike divalent cations such as Sr,and it was thus concluded that original, in this case marine, REE distributions potentially could be preserved through the meteoric carbonate stabilization process that must have affected many, if not most, ancient limestones. Although this was not the case in the analysed sample, they noted that where such diagenesis took place in laterally transported groundwater, trace elements derived from that groundwater could be incorporated into diagenetic calcite, thus altering the initial REE distribution (Banner et al., 1988). Hence, the paper was concerned with the diagenetic behaviour of REEs in a groundwater-dominated karst system. The comment offered by Johannesson (2011) does not question those research results, but rather, seeks to clarify an interpretation made by Webb et al. (2009) of an earlier paper, Johannesson et al. (2006).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ongoing problems exist with the commercial scale domestication of Penaeus monodon. One of the major issues, in terms of reproductive performance, is the low egg hatch rate of eggs from these captive bred prawns. The current study investigated the related issue of mating success. Time lapse video observations were conducted to compare the mating behaviour of pond-reared (domesticated) and wild-caught prawn P. monodon broodstock. Mating success of the pond-reared prawns was found to be low relative to wild-caught. It was determined that both male and female prawns contributed to this low mating rate suggesting both genders were impacted negatively by the domestication process. The causative factors for the low mating success are yet to be determined, however external physical abnormalities and lack of sexual maturity did not appear to play a role. The most notable behavioural difference between wild-caught and domesticated prawns was a reduced level of pursuit behaviour by domesticated males. This and other behavioural differences are discussed in relation to an increasing body of evidence that male prawns respond to sex pheromones produced by receptive females and that males detect these chemical signals in part, via their second antennal flagella. Accordingly we hypothesise that pond-reared (domesticated) females may have a reduced ability to produce or release sex pheromones and males, a reduced ability to detect them when compared to their wild-caught counterparts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In cities, people spend a significant portion of their time indoors, much of which is in office buildings. The quality and nature of these spaces have the potential to be a strong determinant of people’s health and wellbeing. There is a body of evidence that suggests experiences of nature increase the rate of attention recovery, reduce stress, depression and anxiety, and increase cognitive abilities. Further, the presence of nature inside buildings (such as pot plants and internal green walls) can improve indoor air quality, potentially reducing illness and increasing cognitive function. Urban design that integrates nature into the built environment to provide these benefits, among others, is called ‘biophilic urbanism’ and is the subject of growing international interest and research. The potential for these benefits to increase worker productivity in office buildings is of particular interest, as this could significantly increase the financial performance of office building-based organisations. However, productivity is a complex concept that is difficult to define, and affected by a multitude of factors, which make it difficult to measure. This inability to quantify productivity increases from investments in nature- experiences in office buildings is currently a significant barrier to such investments. Within this context, this paper considers opportunities for research to explore the relationship between office-based nature experiences and productivity, by reviewing existing research in this field and reflecting on the authors’ own experiences. This review has a particular focus on the importance of quantifying this link in order to encourage private property owners to voluntarily integrate nature into buildings to provide city-wide ecosystem service benefits. The paper begins with a contextual overview of how biophilic urbanism can potentially increase worker productivity. Existing methods of measuring and evaluating the performance of biophilic urbanism within the context of office buildings are then explored, along with a discussion of issues with such methods that are currently limiting investment in biophilic urbanism to increase worker productivity and wellbeing. This includes a summary of a survey within a Perth office building to explore the impact of views of nature through a window. Drawing on these insights, the paper makes recommendations regarding opportunities for focusing future investigations to enhance understanding of how biophilic urbanism can contribute to increased wellbeing and productivity in office buildings. This paper builds on work conducted as part of the Sustainable Built Environment National Research Centre Project 1.5, Harnessing the Potential of Biophilic Urbanism in Australia, which considered the role of nature integrated into the built environment in responding to emerging challenges of climate change, resource shortages and population pressures, while providing a host of co- benefits to a range of stakeholders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In cities, people spend a significant portion of their time indoors, much of which is in office buildings. The quality and nature of these spaces have the potential to be a strong determinant of people’s health and wellbeing. There is a body of evidence that suggests experiences of nature increase the rate of attention recovery, reduce stress, depression and anxiety, and increase cognitive abilities. Further, the presence of nature inside buildings (such as pot plants and internal green walls) can improve indoor air quality, potentially reducing illness and increasing cognitive function. Urban design that integrates nature into the built environment to provide these benefits, among others, is called ‘biophilic urbanism’ and is the subject of growing international interest and research. The potential for these benefits to increase worker productivity in office buildings is of particular interest, as this could significantly increase the financial performance of office building-based organisations. However, productivity is a complex concept that is difficult to define, and affected by a multitude of factors, which make it difficult to measure. This inability to quantify productivity increases from investments in nature- experiences in office buildings is currently a significant barrier to such investments. Within this context, this paper considers opportunities for research to explore the relationship between office-based nature experiences and productivity, by reviewing existing research in this field and reflecting on the authors’ own experiences. This review has a particular focus on the importance of quantifying this link in order to encourage private property owners to voluntarily integrate nature into buildings to provide city-wide ecosystem service benefits. The paper begins with a contextual overview of how biophilic urbanism can potentially increase worker productivity. Existing methods of measuring and evaluating the performance of biophilic urbanism within the context of office buildings are then explored, along with a discussion of issues with such methods that are currently limiting investment in biophilic urbanism to increase worker productivity and wellbeing. This includes a summary of a survey within a Perth office building to explore the impact of views of nature through a window. Drawing on these insights, the paper makes recommendations regarding opportunities for focusing future investigations to enhance understanding of how biophilic urbanism can contribute to increased wellbeing and productivity in office buildings. This paper builds on work conducted as part of the Sustainable Built Environment National Research Centre Project 1.5, Harnessing the Potential of Biophilic Urbanism in Australia, which considered the role of nature integrated into the built environment in responding to emerging challenges of climate change, resource shortages and population pressures, while providing a host of co- benefits to a range of stakeholders.