51 resultados para Carcinogenic compounds

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The glutathione S-transferase (GST) family of enzymes function in the body to detoxify carcinogenic compounds. Several genes that code for these enzymes are polymorphic, with particular genotypes previously shown to confer an increased cancer risk. In this study, we investigated the role of three GST genes (GSTM1, GSTP1 and GSTT1) in the development of sporadic breast cancer. Genotypes were determined in 129 breast cancer affected and 129 age and sex matched control individuals. Results did not support an involvement of these specific GST gene polymorphisms, either independently or in combination, in susceptibility to sporadic breast cancer in the tested Australian Caucasian population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate C~6~H~16~N^+^ C~8~H~3~Cl~2~O~4~^-^ (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate C~4~H~12~N^+^ C~8~H~3~Cl~2~O~4~^-^ (II), bis(n-butylaminium) 4,5-dichlorophthalate monohydrate 2(C~4~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (III) and bis(piperidinium) 4,5-dichlorophthalate monohydrate 2(C~5~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (IV)have been determined at 200 K. All compounds have hydrogen-bonding associations giving in (I) discrete cation-anion units, linear chains in (II) while (III) and (IV) both have two-dimensional structures. In (I) a discrete cation-anion unit is formed through an asymmetric R2/1(4) N+-H...O,O' hydrogen-bonding association whereas in (II), one-dimensional chains are formed through linear N-H...O associations by both aminium H donors. In compounds (III) and (IV) the primary N-H...O linked cation-anion units are extended into a two-dimensional sheet structure via amide N-H...O(carboxyl) and ...O(carbonyl) interactions. In the 1:1 salts [(I) and (II)], the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxylic acid O-H...O(carboxyl) hydrogen bonds [O...O, 2.4223(14) and 2.388(2)A respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1984, the International Agency for Research on Cancer determined that working in the primary aluminium production process was associated with exposure to certain polycyclic aromatic hydrocarbons (PAHs) that are probably carcinogenic to humans. Key sources of PAH exposure within the occupational environment of a prebake aluminium smelter are processes associated with use of coal-tar pitch. Despite the potential for exposure via inhalation, ingestion and dermal adsorption, to date occupational exposure limits exist only for airborne contaminants. This study, based at a prebake aluminium smelter in Queensland, Australia, compares exposures of workers who came in contact with PAHs from coal-tar pitch in the smelter’s anode plant (n = 69) and cell-reconstruction area (n = 28), and a non-production control group (n = 17). Literature relevant to PAH exposures in industry and methods of monitoring and assessing occupational hazards associated with these compounds are reviewed, and methods relevant to PAH exposure are discussed in the context of the study site. The study utilises air monitoring of PAHs to quantify exposure via the inhalation route and biological monitoring of 1-hydroxypyrene (1-OHP) in urine of workers to assess total body burden from all routes of entry. Exposures determined for similar exposure groups, sampled over three years, are compared with published occupational PAH exposure limits and/or guidelines. Results of paired personal air monitoring samples and samples collected for 1-OHP in urine monitoring do not correlate. Predictive ability of the benzene-soluble fraction (BSF) in personal air monitoring in relation to the 1-OHP levels in urine is poor (adjusted R2 < 1%) even after adjustment for potential confounders of smoking status and use of personal protective equipment. For static air BSF levels in the anode plant, the median was 0.023 mg/m3 (range 0.002–0.250), almost twice as high as in the cell-reconstruction area (median = 0.013 mg/m3, range 0.003–0.154). In contrast, median BSF personal exposure in the anode plant was 0.036 mg/m3 (range 0.003–0.563), significantly lower than the median measured in the reconstruction area (0.054 mg/m3, range 0.003–0.371) (p = 0.041). The observation that median 1-OHP levels in urine were significantly higher in the anode plant than in the reconstruction area (6.62 µmol/mol creatinine, range 0.09–33.44 and 0.17 µmol/mol creatinine, range 0.001–2.47, respectively) parallels the static air measurements of BSF rather than the personal air monitoring results (p < 0.001). Results of air measurements and biological monitoring show that tasks associated with paste mixing and anode forming in the forming area of the anode plant resulted in higher PAH exposure than tasks in the non-forming areas; median 1-OHP levels in urine from workers in the forming area (14.20 µmol/mol creatinine, range 2.02–33.44) were almost four times higher than those obtained from workers in the non-forming area (4.11 µmol/mol creatinine, range 0.09–26.99; p < 0.001). Results justify use of biological monitoring as an important adjunct to existing measures of PAH exposure in the aluminium industry. Although monitoring of 1-OHP in urine may not be an accurate measure of biological effect on an individual, it is a better indicator of total PAH exposure than BSF in air. In January 2005, interim study results prompted a plant management decision to modify control measures to reduce skin exposure. Comparison of 1-OHP in urine from workers pre- and post-modifications showed substantial downward trends. Exposure via the dermal route was identified as a contributor to overall dose. Reduction in 1-OHP urine concentrations achieved by reducing skin exposure demonstrate the importance of exposure via this alternative pathway. Finally, control measures are recommended to ameliorate risk associated with PAH exposure in the primary aluminium production process, and suggestions for future research include development of methods capable of more specifically monitoring carcinogenic constituents of PAH mixtures, such as benzo[a]pyrene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separability is a concept that is very difficult to define, and yet much of our scientific method is implicitly based upon the assumption that systems can sensibly be reduced to a set of interacting components. This paper examines the notion of separability in the creation of bi-ambiguous compounds that is based upon the CHSH and CH inequalities. It reports results of an experiment showing that violations of the CHSH and CH inequality can occur in human conceptual combination.