171 resultados para COBALT(II) CARBOXYLATE

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the monomeric title complex, [Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O, the distorted octahedral CoN2O4 coordination environment comprises two N-atom donors from the bidentate dipyridyldiamine ligand, two O-atom donors from one of the carboxylate groups of the bidentate chelating adipate ligand and two water molecules. In addition, there are three solvent water molecules which are involved in both intra- and inter-unit O-HO hydrogen-bonding interactions, which together with an amine-water N-HO hydrogen bond produce a three-dimensional framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the structure of polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6] . 2H2O}n from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both slightly distorted octahedral Co(II) centres have crystallographic inversion symmetry. The coordination sphere about one Co centre comprises four O donors from two bidentate chelate O(phenolate), O(carboxyl) and bridging dianionic ligands and two water molecules [Co-O range, 2.0249(11)-2.1386(14)A] while that about the second Co centre has four water molecules and two bridging carboxyl O donor atoms [Co-O range, 2.0690(14)-2.1364(11)A]. The coordinated water molecules as well as the water molecules of solvation give water-water and water-carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review collects and summarises the biological applications of the element cobalt. Small amounts of the ferromagnetic metal can be found in rock, soil, plants and animals, but is mainly obtained as a by-product of nickel and copper mining, and is separated from the ores (mainly cobaltite, erythrite, glaucodot and skutterudite) using a variety of methods. Compounds of cobalt include several oxides, including: green cobalt(II) (CoO), blue cobalt(II,III) (Co3O4), and black cobalt(III) (Co2O3); four halides including pink cobalt(II) fluoride (CoF2), blue cobalt(II) chloride (CoCl2), green cobalt(II) bromide (CoBr2), and blue-black cobalt(II) iodide (CoI2). The main application of cobalt is in its metal form in cobalt-based super alloys, though other uses include lithium cobalt oxide batteries, chemical reaction catalyst, pigments and colouring, and radioisotopes in medicine. It is known to mimic hypoxia on the cellular level by stabilizing the α subunit of hypoxia inducing factor (HIF), when chemically applied as cobalt chloride (CoCl2). This is seen in many biological research applications, where it has shown to promote angiogenesis, erythropoiesis and anaerobic metabolism through the transcriptional activation of genes such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), contributing significantly to the pathophysiology of major categories of disease, such as myocardial, renal and cerebral ischaemia, high altitude related maladies and bone defects. As a necessary constituent for the formation of vitamin B12, it is essential to all animals, including humans, however excessive exposure can lead to tissue and cellular toxicity. Cobalt has been shown to provide promising potential in clinical applications, however further studies are necessary to clarify its role in hypoxia-responsive genes and the applications of cobalt-chloride treated tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-CoIITAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-CoIITAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.