475 resultados para Business Process Modelling
em Queensland University of Technology - ePrints Archive
Resumo:
A curriculum for a university-level course called Business Process Modeling is presented in order to provide guidance for the increasing number of institutions who are currently developing such contents. The course caters to undergraduate and post graduate students. Its content is drawn from recent research, industry practice, and established teaching material, and teaches ways of specifying business processes for the analysis and design of process-aware information systems. The teaching approach is a blend of lectures and classroom exercises with innovative case studies, as well as reviews of research material. Students are asked to conceptualize, analyze, and articulate real life process scenarios. Tutorials and cheat sheets assist with the learning experience. Course evaluations from 40 students suggest the adequacy of the teaching approach. Specifically, evaluations show a high degree of satisfaction with course relevance, content presentation, and teaching approach.
Resumo:
The emergence of semantic technologies to deal with the underlying meaning of things, instead of a purely syntactical representation, has led to new developments in various fields, including business process modeling. Inspired by artificial intelligence research, technologies for semantic Web services have been proposed and extended to process modeling. However, the applicablility of semantic Web services for semantic business processes is limited because business processes encompass wider requirements of business than Web services. In particular, processes are concerned with the composition of tasks, that is, in which order activities are carried out, regardless of their implementation details; resources assigned to carry out tasks, such as machinery, people, and goods; data exchange; and security and compliance concerns.
Resumo:
Remote networked collaboration with business model documentation has many communication problems. The aim of this project is to solve some of these communication problems by using digital 3D representations of human visual cues. Results from this project increased our understanding of the role and effects of visual cues in remote collaboration, specifically for validating business process models. Technology designs to support such cues across a distance have been proposed in this thesis with qualitative and quantitative methods of analysis being combined to analyse the impact of these cues on the communication, coordination and performance of a team collaborating remotely.
Resumo:
Selecting an appropriate business process modelling technique forms an important task within the methodological challenges of a business process management project. While a plethora of available techniques has been developed over the last decades, there is an obvious shortage of well-accepted reference frameworks that can be used to evaluate and compare the capabilities of the different techniques. Academic progress has been made at least in the area of representational analyses that use ontology as a benchmark for such evaluations. This paper reflects on the comprehensive experiences with the application of a model based on the Bunge ontology in this context. A brief overview of the underlying research model characterizes the different steps in such a research project. A comparative summary of previous representational analyses of process modelling techniques over time gives insights into the relative maturity of selected process modelling techniques. Based on these experiences suggestions are made as to where ontology-based representational analyses could be further developed and what limitations are inherent to such analyses.
Resumo:
Business Process Management (BPM) has emerged as a popular management approach in both Information Technology (IT) and management practice. While there has been much research on business process modelling and the BPM life cycle, there has been little attention given to managing the quality of a business process during its life cycle. This study addresses this gap by providing a framework for organisations to manage the quality of business processes during different phases of the BPM life cycle. This study employs a multi-method research design which is based on the design science approach and the action research methodology. During the design science phase, the artifacts to model a quality-aware business process were developed. These artifacts were then evaluated through three cycles of action research which were conducted within three large Australian-based organisations. This study contributes to the body of BPM knowledge in a number of ways. Firstly, it presents a quality-aware BPM life cycle that provides a framework on how quality can be incorporated into a business process and subsequently managed during the BPM life cycle. Secondly, it provides a framework to capture and model quality requirements of a business process as a set of measurable elements that can be incorporated into the business process model. Finally, it proposes a novel root cause analysis technique for determining the causes of quality issues within business processes.
Resumo:
Games and related virtual environments have been a much-hyped area of the entertainment industry. The classic quote is that games are now approaching the size of Hollywood box office sales [1]. Books are now appearing that talk up the influence of games on business [2], and it is one of the key drivers of present hardware development. Some of this 3D technology is now embedded right down at the operating system level via the Windows Presentation Foundations – hit Windows/Tab on your Vista box to find out... In addition to this continued growth in the area of games, there are a number of factors that impact its development in the business community. Firstly, the average age of gamers is approaching the mid thirties. Therefore, a number of people who are in management positions in large enterprises are experienced in using 3D entertainment environments. Secondly, due to the pressure of demand for more computational power in both CPU and Graphical Processing Units (GPUs), your average desktop, any decent laptop, can run a game or virtual environment. In fact, the demonstrations at the end of this paper were developed at the Queensland University of Technology (QUT) on a standard Software Operating Environment, with an Intel Dual Core CPU and basic Intel graphics option. What this means is that the potential exists for the easy uptake of such technology due to 1. a broad range of workers being regularly exposed to 3D virtual environment software via games; 2. present desktop computing power now strong enough to potentially roll out a virtual environment solution across an entire enterprise. We believe such visual simulation environments can have a great impact in the area of business process modeling. Accordingly, in this article we will outline the communication capabilities of such environments, giving fantastic possibilities for business process modeling applications, where enterprises need to create, manage, and improve their business processes, and then communicate their processes to stakeholders, both process and non-process cognizant. The article then concludes with a demonstration of the work we are doing in this area at QUT.
Resumo:
Business Process Modelling is a fast growing field in business and information technology, which uses visual grammars to model and execute the processes within an organisation. However, many analysts present such models in a 2D static and iconic manner that is difficult to understand by many stakeholders. Difficulties in understanding such grammars can impede the improvement of processes within an enterprise due to communication problems. In this chapter we present a novel framework for intuitively visualising animated business process models in interactive Virtual Environments. We also show that virtual environment visualisations can be performed with present 2D business process modelling technology, thus providing a low barrier to entry for business process practitioners. Two case studies are presented from film production and healthcare domains that illustrate the ease with which these visualisations can be created. This approach can be generalised to other executable workflow systems, for any application domain being modelled.
Resumo:
Process modeling is a central element in any approach to Business Process Management (BPM). However, what hinders both practitioners and academics is the lack of support for assessing the quality of process models – let alone realizing high quality process models. Existing frameworks are highly conceptual or too general. At the same time, various techniques, tools, and research results are available that cover fragments of the issue at hand. This chapter presents the SIQ framework that on the one hand integrates concepts and guidelines from existing ones and on the other links these concepts to current research in the BPM domain. Three different types of quality are distinguished and for each of these levels concrete metrics, available tools, and guidelines will be provided. While the basis of the SIQ framework is thought to be rather robust, its external pointers can be updated with newer insights as they emerge.
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This paper investigates the application of virtual environment and augmented reality technologies to remote business process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in a shared workspace. We report on the evaluation of a prototype system with five key informants. The results indicate that this approach to business process modelling is suited to remote collaborative task settings, and stakeholders may indeed benefit from using augmented reality interfaces.
Resumo:
Business process management (BPM) is becoming the dominant management paradigm. Business process modelling is central to BPM, and the resultant business process model the core artefact guiding subsequent process change. Thus, model quality is at the centre, mediating between the modelling effort and related growing investment in ultimate process improvements. Nonetheless, though research interest in the properties that differentiate high quality process models is longstanding, there have been no past reports of a valid, operationalised, holistic measure of business process model quality. In attention to this gap, this paper reports validation of a Business Process Model Quality measurement model, conceptualised as a single-order, formative index. Such a measurement model has value as the dependent variable in rigorously researching the drivers of model quality; as antecedent of ultimate process improvements; and potentially as an economical comparator and diagnostic for practice.
Resumo:
Reducing complexity in Information Systems is a main concern in both research and industry. One strategy for reducing complexity is separation of concerns. This strategy advocates separating various concerns, like security and privacy, from the main concern. It results in less complex, easily maintainable, and more reusable Information Systems. Separation of concerns is addressed through the Aspect Oriented paradigm. This paradigm has been well researched and implemented in programming, where languages such as AspectJ have been developed. However, the rsearch on aspect orientation for Business Process Management is still at its beginning. While some efforts have been made proposing Aspect Oriented Business Process Modelling, it has not yet been investigated how to enact such process models in a Workflow Management System. In this paper, we define a set of requirements that specifies the execution of aspect oriented business process models. We create a Coloured Petri Net specification for the semantics of so-called Aspect Service that fulfils these requirements. Such a service extends the capability of a Workflow Management System with support for execution of aspect oriented business process models. The design specification of the Aspect Service is also inspected through state space analysis.
Resumo:
AR process modelling movie presented at Gartner BPM Summit in Sydney, August, 2011. Video showing us using the MS Surface at QUT to perform collaborative process modelling.
Resumo:
Identifying, modelling and documenting business processes usually require the collaboration of many stakeholders that may be spread across companies in inter-organizational settings. While modern process modelling technologies are beginning to provide a number of features to support remote, they lack support for visual cues used in co-located collaboration. In this paper, we examine the importance of visual cues for collaboration tasks in collaborative process modelling. Based on this analysis, we present a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. We then report on a preliminary analysis of the technology. In conclusion, we proceed to describe the future direction of our research with regards to the theoretical contributions expected from the evaluation of the tool.