3 resultados para Brassica Campestris
em Queensland University of Technology - ePrints Archive
Resumo:
A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus. © 2007 Federation of European Biochemical Societies.
Resumo:
RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.
Resumo:
Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.