813 resultados para Bolts and nuts
em Queensland University of Technology - ePrints Archive
Resumo:
Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.
Resumo:
Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.
Resumo:
Previous work has established the effectiveness of systematically monitoring first year higher education students and intervening with those identified as at-risk of attrition. This nuts-and-bolts paper establishes an economic case for a systematic monitoring and intervention program, identifying the visible costs and benefits of such a program at a major Australian university. The benefit of such a program is measured in savings to the institution which would otherwise be lost revenue, in the form of retained equivalent full-time student load (EFTSL). The session will present an economic model based on a number of assumptions. These assumptions are explored along with the applicability of the model to other institutions.
Resumo:
This nuts and bolts session discusses QUT Library’s Study Solutions service which is staffed by academic skills advisors and librarians as the 2nd tier of its learning and study support model. Firstly, it will discuss the rationale behind the Study Solutions model and provide a brief profile of the service. Secondly, it will outline what distinguishes it from other modes of one-to-one learning support. Thirdly, it will report findings from a student perception study conducted to determine what difference this model of individual study assistance made to academic confidence, ability to transfer academic skills and capacity to assist peers. Finally, this session will include small group discussions to consider the feasibility of this model as best practice for other tertiary institutions and student perception as a valuable measure of the impact of learning support services.
Resumo:
While the engagement, success and retention of first year students are ongoing issues in higher education, they are currently of considerable and increasing importance as the pressures on teaching and learning from the new standards framework and performance funding intensifies. This Nuts & Bolts presentation introduces the concept of a maturity model and its application to the assessment of the capability of higher education institutions to address student engagement, success and retention. Participants will be provided with (a) a concise description of the concept and features of a maturity model; and (b) the opportunity to explore the potential application of maturity models (i) to the management of student engagement and retention programs and strategies within an institution and (ii) to the improvement of these features by benchmarking across the sector.
Resumo:
Australian higher education institutions (HEIs) have entered a new phase of regulation and accreditation which includes performance-based funding relating to the participation and retention of students from social and cultural groups previously underrepresented in higher education. However, in addressing these priorities, it is critical that HEIs do not further disadvantage students from certain groups by identifying them for attention because of their social or cultural backgrounds, circumstances which are largely beyond the control of students. In response, many HEIs are focusing effort on university-wide approaches to enhancing the student experience because such approaches will enhance the engagement, success and retention of all students, and in doing so, particularly benefit those students who come from underrepresented groups. Measuring and benchmarking student experiences and engagement that arise from these efforts is well supported by extensive collections of student experience survey data. However no comparable instrument exists that measures the capability of institutions to influence and/or enhance student experiences where capability is an indication of how well an organisational process does what it is designed to do (Rosemann & de Bruin, 2005). This paper proposes that the concept of a maturity model (Marshall, 2010; Paulk, 1999) may be useful as a way of assessing the capability of HEIs to provide and implement student engagement, success and retention activities. We will describe the Student Engagement, Success and Retention Maturity Model (SESR-MM), (Clarke, Nelson & Stoodley, 2012; Nelson, Clarke & Stoodley, 2012) we are currently investigating. We will discuss if our research may address the current gap by facilitating the development of an SESR-MM instrument that aims (i) to enable institutions to assess the capability of their current student engagement and retention programs and strategies to influence and respond to student experiences within the institution; and (ii) to provide institutions with the opportunity to understand various practices across the sector with a view to further improving programs and practices relevant to their context. The first aim of our research is to extend the generational approach which has been useful in considering the evolutionary nature of the first year experience (FYE) (Wilson, 2009). Three generations have been identified and explored: First generation approaches that focus on co-curricular strategies (e.g. orientation and peer programs); Second generation approaches that focus on curriculum (e.g. pedagogy, curriculum design, and learning and teaching practice); and third generation approaches—also referred to as transition pedagogy—that focus on the production of an institution-wide integrated holistic intentional blend of curricular and co-curricular activities (Kift, Nelson & Clarke, 2010). The second aim of this research is to move beyond assessments of students’ experiences to focus on assessing institutional processes and their capability to influence student engagement. In essence, we propose to develop and use the maturity model concept to produce an instrument that will indicate the capability of HEIs to manage and improve student engagement, success and retention programs and strategies. References Australian Council for Educational Research. (n.d.). Australasian Survey of Student Engagement. Retrieved from http://www.acer.edu.au/research/ausse/background Clarke, J., Nelson, K., & Stoodley, I. (2012, July). The Maturity Model concept as framework for assessing the capability of higher education institutions to address student engagement, success and retention: New horizon or false dawn? A Nuts & Bolts presentation at the 15th International Conference on the First Year in Higher Education, “New Horizons,” Brisbane, Australia. Kift, S., Nelson, K., & Clarke, J. (2010) Transition pedagogy - a third generation approach to FYE: A case study of policy and practice for the higher education sector. The International Journal of the First Year in Higher Education, 1(1), pp. 1-20. Department of Education, Employment and Workplace Relations. (n.d.). The University Experience Survey. Advancing quality in higher education information sheet. Retrieved from http://www.deewr.gov.au/HigherEducation/Policy/Documents/University_Experience_Survey.pdf Marshall, S. (2010). A quality framework for continuous improvement of e-Learning: The e-Learning Maturity Model. Journal of Distance Education, 24(1), 143-166. Nelson, K., Clarke, J., & Stoodley, I. (2012). An exploration of the Maturity Model concept as a vehicle for higher education institutions to assess their capability to address student engagement. A work in progress. Submitted for publication. Paulk, M. (1999). Using the Software CMM with good judgment, ASQ Software Quality Professional, 1(3), 19-29. Wilson, K. (2009, June–July). The impact of institutional, programmatic and personal interventions on an effective and sustainable first-year student experience. Keynote address presented at the 12th Pacific Rim First Year in Higher Education Conference, “Preparing for Tomorrow Today: The First Year as Foundation,” Townsville, Australia. Retrieved from http://www.fyhe.com.au/past_papers/papers09/ppts/Keithia_Wilson_paper.pdf
Resumo:
Australian higher education institutions (HEIs) have entered a new phase of regulation and accreditation which includes performance-based funding relating to the participation and retention of students from social and cultural groups previously underrepresented in higher education. However, in addressing these priorities, it is critical that HEIs do not further disadvantage students from certain groups by identifying them for attention because of their social or cultural backgrounds, circumstances which are largely beyond the control of students. In response, many HEIs are focusing effort on university-wide approaches to enhancing the student experience because such approaches will enhance the engagement, success and retention of all students, and in doing so, particularly benefit those students who come from underrepresented groups. Measuring and benchmarking student experiences and engagement that arise from these efforts is well supported by extensive collections of student experience survey data. However no comparable instrument exists that measures the capability of institutions to influence and/or enhance student experiences where capability is an indication of how well an organisational process does what it is designed to do (Rosemann & de Bruin, 2005). We have proposed that the concept of a maturity model (Marshall, 2010; Paulk, 1999) may be useful as a way of assessing the capability of HEIs to provide and implement student engagement, success and retention activities and we are currently articulating a Student Engagement, Success and Retention Maturity Model (SESR-MM), (Clarke, Nelson & Stoodley, 2012; Nelson, Clarke & Stoodley, 2012). Our research aims to address the current gap by facilitating the development of an SESR-MM instrument that aims (i) to enable institutions to assess the capability of their current student engagement and retention programs and strategies to influence and respond to student experiences within the institution; and (ii) to provide institutions with the opportunity to understand various practices across the sector with a view to further improving programs and practices relevant to their context. Our research extends the generational approach which has been useful in considering the evolutionary nature of the first year experience (FYE) (Wilson, 2009). Three generations have been identified and explored: First generation approaches that focus on co-curricular strategies (e.g. orientation and peer programs); Second generation approaches that focus on curriculum (e.g. pedagogy, curriculum design, and learning and teaching practice); and third generation approaches—also referred to as transition pedagogy—that focus on the production of an institution-wide integrated holistic intentional blend of curricular and co-curricular activities (Kift, Nelson & Clarke, 2010). Our research also moves beyond assessments of students’ experiences to focus on assessing institutional processes and their capability to influence student engagement. In essence, we propose to develop and use the maturity model concept to produce an instrument that will indicate the capability of HEIs to manage and improve student engagement, success and retention programs and strategies. The issues explored in this workshop are (i) whether the maturity model concept can be usefully applied to provide a measure of institutional capability for SESR; (ii) whether the SESR-MM can be used to assess the maturity of a particular set of institutional practices; and (iii) whether a collective assessment of an institution’s SESR capabilities can provide an indication of the maturity of the institution’s SESR activities. The workshop will be approached in three stages. Firstly, participants will be introduced to the key characteristics of maturity models, followed by a discussion of the SESR-MM and the processes involved in its development. Secondly, participants will be provided with resources to facilitate the development of a maturity model and an assessment instrument for a range of institutional processes and related practices. In the final stage of the workshop, participants will “assess” the capability of these practices to provide a collective assessment of the maturity of these processes. References Australian Council for Educational Research. (n.d.). Australasian Survey of Student Engagement. Retrieved from http://www.acer.edu.au/research/ausse/background Clarke, J., Nelson, K., & Stoodley, I. (2012, July). The Maturity Model concept as framework for assessing the capability of higher education institutions to address student engagement, success and retention: New horizon or false dawn? A Nuts & Bolts presentation at the 15th International Conference on the First Year in Higher Education, “New Horizons,” Brisbane, Australia. Department of Education, Employment and Workplace Relations. (n.d.). The University Experience Survey. Advancing quality in higher education information sheet. Retrieved from http://www.deewr.gov.au/HigherEducation/Policy/Documents/University_Experience_Survey.pdf Kift, S., Nelson, K., & Clarke, J. (2010) Transition pedagogy - a third generation approach to FYE: A case study of policy and practice for the higher education sector. The International Journal of the First Year in Higher Education, 1(1), pp. 1-20. Marshall, S. (2010). A quality framework for continuous improvement of e-Learning: The e-Learning Maturity Model. Journal of Distance Education, 24(1), 143-166. Nelson, K., Clarke, J., & Stoodley, I. (2012). An exploration of the Maturity Model concept as a vehicle for higher education institutions to assess their capability to address student engagement. A work in progress. Submitted for publication. Paulk, M. (1999). Using the Software CMM with good judgment, ASQ Software Quality Professional, 1(3), 19-29. Wilson, K. (2009, June–July). The impact of institutional, programmatic and personal interventions on an effective and sustainable first-year student experience. Keynote address presented at the 12th Pacific Rim First Year in Higher Education Conference, “Preparing for Tomorrow Today: The First Year as Foundation,” Townsville, Australia. Retrieved from http://www.fyhe.com.au/past_papers/papers09/ppts/Keithia_Wilson_paper.pdf
Resumo:
LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.
Resumo:
This paper presents evidence of an apparent connection between ball lightning and a green fireball. On the evening of the 16th May 2006 at least three fireballs were seen by many people in the skies of Queensland, Australia. One of the fireballs was seen passing over the Great Divide about 120 km west of Brisbane, and soon after, a luminous green ball about 30 cm in diameter was seen rolling down the slope of the Great Divide. A detailed description given by a witness indicates that the phenomenon was probably a highly luminous form of ball lightning. An hypothesis presented in this paper is that the passage of the Queensland fireball meteor created an electrically conductive path between the ionosphere and ground, providing energy for the ball lightning phenomenon. A strong similarity is noted between the Queensland fireball and the Pasamonte fireball seen in New Mexico in 1933. Both meteors exhibit a twist in the tail that could be explained by hydrodynamic forces. The possibility that multiple sightings of fireballs across South East Queensland were produced owing to fragments from comet 73P Schwassmann-Wachmann 3 is discussed.
Resumo:
Information and communication technologies (ICTs) are essential components of the knowledge economy, and have an immense complementary role in innovation, education, knowledge creation, and relations with government, civil society, and business within city regions. The ability to create, distribute, and exploit knowledge has become a major source of competitive advantage, wealth creation, and improvements in the new regional policies. Growing impact of ICTs on the economy and society, rapid application of recent scientific advances in new products and processes, shifting to more knowledge-intensive industry and services, and rising skill requirements have become crucial concepts for urban and regional competitiveness. Therefore, harnessing ICTs for knowledge-based urban development (KBUD) has a significant impact on urban and regional growth (Yigitcanlar, 2005). In this sense, e-region is a novel concept utilizing ICTs for regional development. Since the Helsinki European Council announced Turkey as a candidate for European Union (EU) membership in 1999, the candidacy has accelerated the speed of regional policy enhancements and adoption of the European regional policy standards. These enhancements and adoption include the generation of a new regional spatial division, NUTS-II statistical regions; a new legislation on the establishment of regional development agencies (RDAs); and new orientations in the field of high education, science, and technology within the framework of the EU’s Lisbon Strategy and the Bologna Process. The European standards posed an ambitious new agenda in the development and application of contemporary regional policy in Turkey (Bilen, 2005). In this sense, novel regional policies in Turkey necessarily endeavor to include information society objectives through efficient use of new technologies such as ICTs. Such a development seeks to be based on tangible assets of the region (Friedmann, 2006) as well as the best practices deriving from grounding initiatives on urban and local levels. These assets provide the foundation of an e-region that harnesses regional development in an information society context. With successful implementations, the Marmara region’s local governments in Turkey are setting the benchmark for the country in the implementation of spatial information systems and e-governance, and moving toward an e-region. Therefore, this article aims to shed light on organizational and regional realities of recent practices of ICT applications and their supply instruments based on evidence from selected local government organizations in the Marmara region. This article also exemplifies challenges and opportunities of the region in moving toward an e-region and provides a concise review of different ICT applications and strategies in a broader urban and regional context. The article is organized in three parts. The following section scrutinizes the e-region framework and the role of ICTs in regional development. Then, Marmara’s opportunities and challenges in moving toward an e-region are discussed in the context of ICT applications and their supply instruments based on public-sector projects, policies, and initiatives. Subsequently, the last section discusses conclusions and prospective research.
Resumo:
A managed team of discipline-experienced and trained later year students are used as Student Success Advisors (SSAs) in the Student Success Program, an intervention program that manages student engagement by identifying and supporting first year students at-risk of disengaging from learning. This report focuses on the recruitment and training of SSAs and the day-to-day challenges they and their managers face. The Nuts & Bolts session provides participants with opportunities to discuss the applicability to their institutional contexts of the recruitment and training processes and the “solutions” to the challenges used at QUT.
Resumo:
Food modelling systems such as the Core Foods and the Australian Guide to Healthy Eating are frequently used as nutritional assessment tools for menus in ‘well’ groups (such as boarding schools, prisons and mental health facilities), with the draft Foundation and Total Diets (FATD) the latest revision. The aim of this paper is to apply the FATD to an assessment of food provision in a long stay, ‘well’, group setting to determine its usefulness as a tool. A detailed menu review was conducted in a 1000 bed male prison, including verification of all recipes. Full diet histories were collected on 106 prisoners which included foods consumed from the menu and self funded snacks. Both the menu and diet histories were analysed according to core foods, with recipes used to assist in quantification of mixed dishes. Comparison was made of average core foods with Foundation Diet recommendations (FDR) for males. Results showed that the standard menu provided sufficient quantity for 8 of 13 FDRs, however was low in nuts, legumes, refined cereals and marginally low in fruits and orange vegetables. The average prisoner diet achieved 9 of 13 FDRs, notably with margarines and oils less than half and legumes one seventh of recommended. Overall, although the menu and prisoner diets could easily be assessed using the FDRs, it was not consistent with recommendations. In long stay settings other Nutrient Reference Values not modelled in the FATDS need consideration, in particular, Suggested Dietary Targets and professional judgement is required in interpretation.
Resumo:
“The Student Success Program (SSP) is a monitoring and early intervention program in operation at QUT designed to identify and support those students deemed to be at risk of disengaging for their learning and their institution” (Nelson, Quinn, Marrington & Clarke, 2011, p. 83). This report reflects on the development of the program since its inception in 2007. In acknowledging similar initiatives within the sector that monitor student learning engagement, the Nuts & Bolts session allows for identification and discussion of the critical success factors for these intervention and support programs.
Resumo:
Background & aims: - Excess adiposity (overweight) is one of numerous risk factors for cardiometabolic disease. Most risk reduction strategies for overweight rely on weight loss through dietary energy restriction. However, since the evidence base for long-term successful weight loss interventions is scant, it is important to identify strategies for risk reduction independent of weight loss. The aim of this study was to compare the effects of isoenergetic substitution of dietary saturated fat (SFA) with monounsaturated fat (MUFA) via macadamia nuts on coronary risk compared to usual diet in overweight adults. Methods: - A randomised controlled trial design, maintaining usual energy intake, but manipulating dietary lipid profile in a group of 64 (54 female, 10 male) overweight (BMI > 25), otherwise healthy, subjects. For the intervention group, energy intakes of usual (baseline) diets were calculated from multiple 3 day diet diaries, and SFA was replaced with MUFA (target: 50%E from fat as MUFA) by altering dietary SFA sources and adding macadamia nuts to the diet. Both control and intervention groups received advice on national guidelines for physical activity and adhered to the same protocol for diet diary record keeping and trial consultations. Anthropometric and clinical measures were taken at baseline and at 10 weeks. Results: A significant increase in brachial artery flow-mediated dilation (p < 0.05) was seen in the monounsaturated diet group at week 10 compared to baseline. This corresponded to significant decreases in waist circumference, total cholesterol (p < 0.05), plasma leptin and ICAM-1 (p < 0.01). Conclusions: - In patient subgroups where adherence to dietary energy-reduction is poor, isoenergetic interventions may improve endothelial function and other coronary risk factors without changes in body weight. This trial was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12607000106437).
Resumo:
This work demonstrates how the Australian core food groups system can be modified to enable the planning of vegan and lactovegetarian diets as well as omnivorous diets. In the modified version the cereals, vegetables and fruits groups remain the same as in the core food groups system, while the meat group is replaced with legumes, soya products, nuts and seeds. The milk group becomes milk or fortified soya milk, to allow for both lactovegetarian and vegan diets. The core food groups standard of 70% of the recommended dietary intake was adopted as a target for determining recommendations on the minimum number of serves from each food group. As found in the development of the core food groups system, zinc was the most limiting nutrient. Vitamin B 12 and calcium were other limiting nutrients in the vegan and lactovegetarian guides. The number of serves from each group required to meet 70% of the applicable recommended dietary intake has been calculated for children from four years old, adult men and women and pregnant and lactating women. It was found that the number of serves from each food group required in the vegan and lactovegetarian planning guides was in most cases similar to the number of serves of corresponding core food groups specified for a particular population group. This suggests that the vegan and lactovegetarian planning guides could be incorporated into a modified core food groups planning guide. Such a guide would cater for the general omnivorous population as well as for those seeking to avoid meat and/or dairy products. (Aust J Nutr Diet 1999:56:22-30) Key words: vegan, vegetarian, food guide, food groups, dietary planning.