73 resultados para Biology, Genetics|Biology, Microbiology

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci6 and pathway analyses7, 8, 9—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The cancer stem-cell (CSC) hypothesis suggests that there is a small subset of cancer cells that are responsible for tumor initiation and growth, possessing properties such as indefinite self-renewal, slow replication, intrinsic resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated progeny. Through the use of xenotransplantation assays, putative CSCs have been identified in many cancers, often identified by markers usually expressed in normal stem cells. This is also the case in lung cancer, and the accumulated data on side population cells, CD133, CD166, CD44 and ALDH1 are beginning to clarify the true phenotype of the lung cancer stem cell. Furthermore, it is now clear that many of the pathways of normal stem cells, which guide cellular proliferation, differentiation, and apoptosis are also prominent in CSCs; the Hedgehog (Hh), Notch, and Wnt signaling pathways being notable examples. The CSC hypothesis suggests that there is a small reservoir of cells within the tumor, which are resistant to many standard therapies, and can give rise to new tumors in the form of metastases or relapses after apparent tumor regression. Therapeutic interventions that target CSC pathways are still in their infancy and clinical data of their efficacy remain limited. However Smoothened inhibitors, gamma-secretase inhibitors, anti-DLL4 antagonists, Wnt antagonists, and CBP/β-catenin inhibitors have all shown promising anticancer effects in early studies. The evidence to support the emerging picture of a lung cancer CSC phenotype and the development of novel therapeutic strategies to target CSCs are described in this review.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PURPOSE Colorectal signet-ring cell carcinoma (SRCC) is rare, and very little detailed information on the molecular biology of the disease is available. METHODS The literature on the clinical, pathological and, in particular, the molecular biology of this rare entity was critically reviewed. The reviewed articles take into account a total of 1,817 cases of SRCC, but only 143 cases have molecular data available. The characteristics of two patients with colorectal SRCC were also discussed. RESULTS Colorectal SRCC mostly occurs in younger patients, is larger and has different site predilection compared with conventional colorectal adenocarcinoma. It can occur as one of the synchronous cancers in the colorectum. The cancer is usually diagnosed at advanced stages because of the late manifestation of symptoms, and aggressive treatment strategy is required. Limited reports in the literature have shown that the variant of colorectal cancer demonstrated a different pattern of genetic alterations of common growth kinase-related oncogenes (K-ras, BRAF), tumour suppressor genes (p53, p16), gene methylation and cell adhesion-related genes related to the Wingless signalling pathway (E-cadherin and beta-catenin) from conventional colorectal adenocarcinoma. Colorectal SRCC also showed high expression of mucin-related genes and genes related to the gastrointestinal system. There was also a higher prevalence of microsatellite instability-high tumours and low Cox-2 expression in colorectal SRCC as opposed to conventional adenocarcinoma. CONCLUSIONS Colorectal SRCC has unique molecular pathological features. The unique molecular profiles in SRCC may provide molecular-based improvements to patient management in colorectal SRCC.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The O-specific polysaccharide (OPS) is a variable constituent of the lipopolysaccharide of Gram-negative bacteria. The polymorphic nature of OPSs within a species is usually first defined serologically, and the current serotyping scheme for Yersinia pseudotuberculosis consists of 21 O serotypes of which 15 have been characterized genetically and structurally. Here, we present the structure and DNA sequence of Y. pseudotuberculosis O:10 OPS. The O unit consists of one residue each of d-galactopyranose, N-acetyl-d-galactosamine (2-amino-2-deoxy-d-galactopyranose) and d-glucopyranose in the backbone, with two colitose (3,6-dideoxy-l-xylo-hexopyranose) side-branch residues. This structure is very similar to that shared by Escherichia coli O111 and Salmonella enterica O35. The gene cluster sequences of these serotypes, however, have only low levels of similarity to that of Y. pseudotuberculosis O:10, although there is significant conservation of gene order. Within Y. pseudotuberculosis, the O10 structure is most closely related to the O:6 and O:7 structures.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This unique and comprehensive collection investigates the challenges posed to intellectual property by recent paradigm shifts in biology. It explores the legal ramifications of emerging technologies, such as genomics, synthetic biology, stem cell research, nanotechnology, and biodiscovery. Extensive contributions examine recent controversial court decisions in patent law – such as Bilski v. Kappos, and the litigation over Myriad’s patents in respect of BRCA1 and BRCA2 – while other papers explore sui generis fields, such as access to genetic resources, plant breeders' rights, and traditional knowledge. The collection considers the potential and the risks of the new biology for global challenges – such as access to health-care, the protection of the environment and biodiversity, climate change, and food security. It also considers Big Science projects – such as biobanks, the 1000 Genomes Project, and the Doomsday Vault. The inter-disciplinary research brings together the work of scholars from Australia, Canada, Europe, the UK and the US and involves not only legal analysis of case law and policy developments, but also historical, comparative, sociological, and ethical methodologies. Intellectual Property and Emerging Technologies will appeal to policy-makers, legal practitioners, business managers, inventors, scientists and researchers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.