59 resultados para Bidirectional Coupling

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changing informational constraints of practice, such as when using ball projection machines, has been shown to significantly affect movement coordination of skilled cricketers. To date, there has been no similar research on movement responses of developing batters, an important issue since ball projection machines are used heavily in cricket development programmes. Timing and coordination of young cricketers (n = 12, age = 15.6 ± 0.7 years) were analyzed during the forward defensive and forward drive strokes when facing a bowling machine and bowler (both with a delivery velocity of 28.14 ± 0.56 m s−1). Significant group performance differences were observed between the practice task constraints, with earlier initiation of the backswing, front foot movement, downswing, and front foot placement when facing the bowler compared to the bowling machine. Peak height of the backswing was higher when facing the bowler, along with a significantly larger step length. Altering the informational constraints of practice caused major changes to the information–movement couplings of developing cricketers. Data from this study were interpreted to emanate from differences in available specifying variables under the distinct practice task constraints. Considered with previous findings, results confirmed the need to ensure representative batting task constraints in practice, cautioning against an over-reliance on ball projection machines in cricket development programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high voltage pulsed power supply is proposed in this paper based on oscillation between an inductor and a capacitor in an LC circuit. A two-leg resonant circuit, supplied through an inverter with an alternative voltage waveform, can generate output voltage up to four times an input voltage magnitude. Bipolar and unipolar modulations are used in a single phase inverter to analyse their effects on the proposed resonant converter. Simulations have been carried out to evaluate the proposed topology and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bearing damage in modern inverter-fed AC drive systems is more common than in motors working with 50 or 60 Hz power supply. Fast switching transients and common mode voltage generated by a PWM inverter cause unwanted shaft voltage and resultant bearing currents. Parasitic capacitive coupling creates a path to discharge current in rotors and bearings. In order to analyze bearing current discharges and their effect on bearing damage under different conditions, calculation of the capacitive coupling between the outer and inner races is needed. During motor operation, the distances between the balls and races may change the capacitance values. Due to changing of the thickness and spatial distribution of the lubricating grease, this capacitance does not have a constant value and is known to change with speed and load. Thus, the resultant electric field between the races and balls varies with motor speed. The lubricating grease in the ball bearing cannot withstand high voltages and a short circuit through the lubricated grease can occur. At low speeds, because of gravity, balls and shaft voltage may shift down and the system (ball positions and shaft) will be asymmetric. In this study, two different asymmetric cases (asymmetric ball position, asymmetric shaft position) are analyzed and the results are compared with the symmetric case. The objective of this paper is to calculate the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The α,ω-diyne 4,7,10-trithiatrideca-2,11-diyne reacts with [RuCl2(PPh3)3] and KPF6 to form the phosphonio-substituted metallatricyclic salt [RuCl(PPh3){κ4C,S,S′,S′′-S(C≡CMe)C2H4SC2H4SC(PPh3)CMe}]PF6 arising from the activation of one alkynyl group toward nucleophilic attack by extraneous phosphine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well accepted that different types of distributed architectures require different degrees of coupling. For example, in client-server and three-tier architectures, application components are generally tightly coupled, both with one another and with the underlying middleware. Meanwhile, in off-line transaction processing, grid computing and mobile applications, the degree of coupling between application components and with the underlying middleware needs to be minimized. Terms such as ‘synchronous’, ‘asynchronous’, ‘blocking’, ‘non-blocking’, ‘directed’, and ‘non-directed’ are often used to refer to the degree of coupling required by an architecture or provided by a middleware. However, these terms are used with various connotations. Although various informal definitions have been provided, there is a lack of an overarching formal framework to unambiguously communicate architectural requirements with respect to (de-)coupling. This article addresses this gap by: (i) formally defining three dimensions of (de-)coupling; (ii) relating these dimensions to existing middleware; and (iii) proposing notational elements to represent various coupling integration patterns. This article also discusses a prototype that demonstrates the feasibility of its implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of metal stripes for the guiding of plasmons is a well established technique for the infrared regime and has resulted in the development of a myriad of passive optical components and sensing devices. However, the plasmons suffer from large losses around sharp bends, making the compact design of nanoscale sensors and circuits problematic. A compact alternative would be to use evanescent coupling between two sufficiently close stripes, and thus we propose a compact interferometer design using evanescent coupling. The sensitivity of the design is compared with that achieved using a hand-held sensor based on the Kretschmann style surface plasmon resonance technique. Modeling of the new interferometric sensor is performed for various structural parameters using finite-difference time-domain and COMSOL Multiphysics. The physical mechanisms behind the coupling and propagation of plasmons in this structure are explained in terms of the allowed modes in each section of the device.