50 resultados para Bidentate ligand
em Queensland University of Technology - ePrints Archive
Resumo:
For a series of six-coordinate Ru(II)(CO)L or Rh(III)(X–)L porphyrins which are facially differentiated by having a naphthoquinol- or hydroquinol-containing strap across one face, we show that ligand migration from one face to the other can occur under mild conditions, and that ligand site preference is dependent on the nature of L and X–. For bulky nitrogen-based ligands, the strap can be displaced sideways to accommodate the ligand on the same side as the strap. For the ligand pyrazine, we show 1 H NMR evidence for monodentate and bidentate binding modes on both faces, dependent on ligand concentration and metalloporphyrin structure, and that inter-facial migration is rapid under normal conditions. For monodentate substituted pyridine ligands there is a site dependence on structure, and we show clear evidence of dynamic ligand migration through a series of ligand exchange reactions.
Resumo:
The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.
New Cadmium(II) and Iron(II) Coordination Frameworks Incorporating a Di(4-Pyridyl)Isoindoline Ligand
Resumo:
Two series of novel ruthenium bipyridyl dyes incorporating sulfur-donor bidentate ligands with general formula \[Ru(R-bpy)2C2N2S2] and \[Ru(R-bpy)2(S2COEt)]\[NO3] (where R =H, CO2Et, CO2H; C2N2S2 = cyanodithioimidocarbonate and S2COEt = ethyl xanthogenate) have been synthesized and characterized spectroscopically, electrochemically and computationally. The acid derivatives in both series (C2N2S2 3 and S2COEt 6) were used as a photosensitizer in a dye-sensitized solar cell (DSSC) and the incident photo-to-current conversion efficiency (IPCE), overall efficiency (_) and kinetics of the dye/TiO2 system were investigated. It was found that 6 gave a higher efficiency cell than 3 despite the latter dye’s more favorable electronic properties, such as greater absorption range, higher molar extinction coefficient and large degree of delocalization of the HOMO. The transient absorption spectroscopy studies revealed that the recombination kinetics of 3 were unexpectedly fast, which was attributed to the terminal CN on the ligand binding to the TiO2, as evidenced by an absorption study of R =H and CO2Et dyes sensitized on TiO2, and hence leading to a lower efficiency DSSC.
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.
Resumo:
Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.
Resumo:
In the structure of the title complex, [Cs(C6H2Cl3N2O2)(H2O)]n, the caesium salt of the commercial herbicide picloram, the Cs+ cation lies on a crystallographic mirror plane, which also contains the coordinating water molecule and all non-H atoms of the 4-amino-3,5,6-trichloropicolinate anion except the carboxylate O-atom donors. The irregular CsCl4O5 coordination polyhedron comprises chlorine donors from the ortho-related ring substituents of the picloramate ligand in a bidentate chelate mode, with a third chlorine bridging [Cs-Cl range 3.6052 (11)-3.7151 (11) Å] as well as a bidentate chelate carboxylate group giving sheets extending parallel to (010). A three-dimensional coordination polymer structure is generated through the carboxylate group, which also bridges the sheets down [010]. Within the structure, there are intra-unit water O-HOcarboxylate and amine N-HNpyridine hydrogen-bonding interactions.
Resumo:
In the monomeric title complex, [Co(C6H8O4)(C10H9N3)(H2O)2]·3H2O, the distorted octahedral CoN2O4 coordination environment comprises two N-atom donors from the bidentate dipyridyldiamine ligand, two O-atom donors from one of the carboxylate groups of the bidentate chelating adipate ligand and two water molecules. In addition, there are three solvent water molecules which are involved in both intra- and inter-unit O-HO hydrogen-bonding interactions, which together with an amine-water N-HO hydrogen bond produce a three-dimensional framework.