7 resultados para Bellingshausen Sea, small escarpment at shelf break
em Queensland University of Technology - ePrints Archive
Resumo:
This study responds to calls for research on work-family aspects in entrepreneurship research. Our study examined the role of work-family conflict and enhancement on small business owners’ (SBOs) wellbeing. We found work-family has negative direct effect on mental health, job and family satisfactions. Furthermore, we found that under high level of work-family conflict condition, SBOs who perceive a greater level of work-family enhancement would feel more satisfy with their life, job as well as family aspects. Interestingly, under high level of conflict, even SBOs perceive greater level of enhancement, it would not lessen the negative impact of the conflict on their mental health. These results suggest that once psychological health is harmed by work-family conflict, its negative consequences remain unchanged.
Resumo:
In natural estuaries, scalar diffusion and dispersion are driven by turbulence. In the present study, detailed turbulence measurements were conducted in a small subtropical estuary with semi-diurnal tides under neap tide conditions. Three acoustic Doppler velocimeters were installed mid-estuary at fixed locations close together. The units were sampled simultaneously and continuously at relatively high frequency for 50 h. The results illustrated the influence of tidal forcing in the small estuary, although low frequency longitudinal velocity oscillations were observed and believed to be induced by external resonance. The boundary shear stress data implied that the turbulent shear in the lower flow region was one order of magnitude larger than the boundary shear itself. The observation differed from turbulence data in a laboratory channel, but a key feature of natural estuary flow was the significant three dimensional effects associated with strong secondary currents including transverse shear events. The velocity covariances and triple correlations, as well as the backscatter intensity and covariances, were calculated for the entire field study. The covariances of the longitudinal velocity component showed some tidal trend, while the covariances of the transverse horizontal velocity component exhibited trends that reflected changes in secondary current patterns between ebb and flood tides. The triple correlation data tended to show some differences between ebb and flood tides. The acoustic backscatter intensity data were characterised by large fluctuations during the entire study, with dimensionless fluctuation intensity I0b =Ib between 0.46 and 0.54. An unusual feature of the field study was some moderate rainfall prior to and during the first part of the sampling period. Visual observations showed some surface scars and marked channels, while some mini transient fronts were observed.
Resumo:
Bioclastic flow deposits offshore from the Soufrie`re Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse-grained and either ungraded or poorly graded, and were deposited by non cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub-units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub-units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi-stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea-level change.
Resumo:
Cenozoic extension in western Mexico has been divided into two episodes separated by the change from convergence to oblique divergence at the plate boundary. The Gulf Extensional Province is thought to have started once subduction ended at ~12.5 Ma whereas early extension is classified as Basin and Range. Mid-Miocene volcanism of the Comondú group has been considered as a subduction-related arc, whereas post ~12.5 Ma volcanism would be extension-related. Our new integration of the continental onshore and offshore geology of the south-east Gulf region, backed by tens of Ar-Ar and U-Pb ages and geochemical studies, document an early-mid Miocene rifting and extension-related bimodal to andesitic magmatism prior to subduction termination. Between ~21 and 11 Ma a system of NNW-SSE high-angle extensional faults rifted the western side of the Sierra Madre Occidental (SMO) ignimbrite plateau. In Nayarit, rhyolitic domes and some basalts were emplaced along this extensional belt at 18-17 Ma. These rocks show strong antecrystic inheritance but an absence of Mesozoic and older xenocrysts, suggesting a genesis in the mid-upper crust triggered by extension-induced basaltic influx. In Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15 Ma. Mid-Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California, was thus emplaced in rift basins and appears associated to decompression melting rather than subduction. Along the coast, flat-lying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here crustal thickness is 25-20 Km, almost half that in the core of the SMO, implying significant lithosphere stretching before ~11 Ma. This mafic pulse, with relatively high Ti but still clear Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing asthenosphere to flow into parts of the mantle previously fluxed by subduction fluids. Very uniform OIB-like lavas appear in late Pliocene and Pleistocene, only 18 m.y. after the onset of rifting and ~9 m.y. after the end of subduction. Our study shows that rifting began much earlier than Late Miocene and progressively overwhelmed subduction in generating magmatism.
Resumo:
The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.
Resumo:
This study was conducted to assess the vulnerability of coastal road infrastructures due to climate change induced sea level rise and extreme weather conditions through the estimation of road subgrade strength reduction as a result of changes in soil moisture content. The study area located in the Gold Coast, Australia highlighted that the risk is significant. In wet seasons or areas with wet condition, the groundwater table is already high, so even a small change in the groundwater table can raise the risk of inundation; particularly, in areas with existing shallow groundwater. The predicted risk of a high groundwater table on road infrastructure is a long-term hazard. Therefore, there is time to undertake some management plans to decrease the possible risks, for instance, some deep root plants could be planted along the roads with a high level of risk, to decrease the groundwater table elevation.
Resumo:
Moreton Island and several other large siliceous sand dune islands and mainland barrier deposits in SE Queensland represent the distal, onshore component of an extensive Quaternary continental shelf sediment system. This sediment has been transported up to 1000 km along the coast and shelf of SE Australia over multiple glacioeustatic sea-level cycles. Stratigraphic relationships and a preliminary Optically Stimulated Luminance (OSL) chronology for Moreton Island indicate a middle Pleistocene age for the large majority of the deposit. Dune units exposed in the centre of the island and on the east coast have OSL ages that indicate deposition occurred between approximately 540 ka and 350 ka BP, and at around 96±10 ka BP. Much of the southern half of the island has a veneer of much younger sediment, with OSL ages of 0.90±0.11 ka, 1.28±0.16 ka, 5.75±0.53 ka and <0.45 ka BP. The younger deposits were partially derived from the reworking of the upper leached zone of the much older dunes. A large parabolic dune at the northern end of the island, OSL age of 9.90±1.0 ka BP, and palaeosol exposures that extend below present sea level suggest the Pleistocene dunes were sourced from shorelines positioned several to tens of metres lower than, and up to few kilometres seaward of the present shoreline. Given the lower gradient of the inner shelf a few km seaward of the island, it seems likely that periods of intermediate sea level (e.g. ~20 m below present) produced strongly positive onshore sediment budgets and the mobilisation of dunes inland to form much of what now comprises Moreton Island. The new OSL ages and comprehensive OSL chronology for the Cooloola deposit, 100 km north of Moreton Island, indicate that the bulk of the coastal dune deposits in SE Queensland were emplaced between approximately 540 ka BP and prior to the Last Interglacial. This chronostratigraphic information improves our fundamental understanding of long-term sediment transport and accumulation on large-scale continental shelf sediment systems.