275 resultados para Behaviour and motivation

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in fluidization behaviour behaviour was characterised for parallelepiped particles with three aspect ratios, 1:1, 2:1 and 3:1 and spherical particles. All drying experiments were conducted at 500C and 15 % RH using a heat pump dehumidifier system. Fluidization experiments were undertaken for the bed heights of 100, 80, 60 and 40 mm and at 10 moisture content levels. Due to irregularities in shape minimum fluidisation velocity of parallelepiped particulates (potato) could not fitted to any empirical model. Also a generalized equation was used to predict minimum fluidization velocity. The modified quasi-stationary method (MQSM) has been proposed to describe drying kinetics of parallelepiped particulates at 30o C, 40o C and 50o C that dry mostly in the falling rate period in a batch type fluid bed dryer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In the early school years, children need positive attitudes to school and experiences that promote academic and social competence. Positive relationships between children and teachers make a significant contribution to school achievement and social competence. Girls are more likely to display positive classroom behaviours and positive approaches to learning than boys. Gender differences have also been noted in teacher-child relationships. This study investigated the relationship between gender differences in classroom behaviour and gender differences in teacher-child relationships in the early years. Method: Data were drawn from The Longitudinal Study of Australian Children (LSAC). LSAC is a cross-sequential cohort study funded by the Australian Government. In these analyses, Wave 1 (2004) and Wave 2 (2006) data for 4464 children in the Kindergarten Cohort were used. Children, at Wave 2, were in the early years of formal school. They had a mean age of 6.8 years (SD= 0.24). Measures included a 6-item measure of Approaches to Learning (task persistence, independence) and teacher ratings on the SDQ. Teachers rated their relationships with children on the short form of the STRS. Results: Girls were found to have more positive relationships with their teachers and to display more positive classroom behaviours than boys. Teachers described their relationships with boys as less close than their relationships with girls and rated girls as displaying more positive approaches to learning and fewer problem behaviours than boys. Positive teacher – child relationships were significantly related to more positive classroom behaviours. The quality of the teacher-child relationship at time 1 (Wave 1) was the best predictor of the quality of the teacher-child relationship at time 2 (Wave 2). Conclusions: Findings highlight the importance of developing positive learning related classroom behaviours in understanding successful school transition and the key role played by early positive teacher-child relationships in promoting school adjustment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian Constitutional referendums have been part of the Australian political system since federation. Up to the year 1999 (the time of the last referendum in Australia), constitutional change in Australia does not have a good history of acceptance. Since 1901, there have been 44 proposed constitutional changes with eight gaining the required acceptance according to section 128 of the Australian Constitution. In the modern era since 1967, there have been 20 proposals over seven referendum votes for a total of four changes. Over this same period, there have been 13 federal general elections which have realised change in government just five times. This research examines the electoral behaviour of Australian voters from 1967 to 1999 for each referendum. Party identification has long been a key indicator in general election voting. This research considers whether the dominant theory of voter behaviour in general elections (the Michigan Model) provides a plausible explanation for voting in Australian referendums. In order to explain electoral behaviour in each referendum, this research has utilised available data from the Australian Electoral Commission, the 1996 Australian Bureau of Statistics Census data, and the 1999 Australian Constitutional Referendum Study. This data has provided the necessary variables required to measure the impact of the Michigan Model of voter behaviour. Measurements have been conducted using bivariate and multivariate analyses. Each referendum provides an overview of the events at the time of the referendum as well as the =yes‘ and =no‘ cases at the time each referendum was initiated. Results from this research provide support for the Michigan Model of voter behaviour in Australian referendum voting. This research concludes that party identification, as a key variable of the Michigan Model, shows that voters continue to take their cues for voting from the political party they identify with in Australian referendums. However, the outcome of Australian referendums clearly shows that partisanship is only one of a number of contributory factors in constitutional referendums.