69 resultados para BOUND-CONSTRAINED MINIMIZATION

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the behavior of the empirical minimization algorithm using various methods. We first analyze it by comparing the empirical, random, structure and the original one on the class, either in an additive sense, via the uniform law of large numbers, or in a multiplicative sense, using isomorphic coordinate projections. We then show that a direct analysis of the empirical minimization algorithm yields a significantly better bound, and that the estimates we obtain are essentially sharp. The method of proof we use is based on Talagrand’s concentration inequality for empirical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active Appearance Models (AAMs) employ a paradigm of inverting a synthesis model of how an object can vary in terms of shape and appearance. As a result, the ability of AAMs to register an unseen object image is intrinsically linked to two factors. First, how well the synthesis model can reconstruct the object image. Second, the degrees of freedom in the model. Fewer degrees of freedom yield a higher likelihood of good fitting performance. In this paper we look at how these seemingly contrasting factors can complement one another for the problem of AAM fitting of an ensemble of images stemming from a constrained set (e.g. an ensemble of face images of the same person).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parents’ education, school achievement), and tested differences among work-bound, college-bound and university-bound students. The work-bound students had the poorest career development and personal functioning, the university-bound students the highest, with the college-bound students falling in-between the other two groups. Work-bound students did poorest, even after controlling for parental education and school achievement. The results suggest a relationship between career development and personal functioning in high school students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage localization induced by strain softening can be predicted by the direct minimization of a global energy function. This article concerns the computational strategy for implementing this principle for softening materials such as concrete. Instead of using heuristic global optimization techniques, our strategies are a hybrid of local optimization methods with a path-finding approach to ensure a global optimum. With admissible nodal displacements being independent variables, it is easy to deal with the geometric (mesh) constraint conditions. The direct search optimization methods recover the localized solutions for a range of softening lattice models which are representative of quasi-brittle structures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web service composition is an important problem in web service based systems. It is about how to build a new value-added web service using existing web services. A web service may have many implementations, all of which have the same functionality, but may have different QoS values. Thus, a significant research problem in web service composition is how to select a web service implementation for each of the web services such that the composite web service gives the best overall performance. This is so-called optimal web service selection problem. There may be mutual constraints between some web service implementations. Sometimes when an implementation is selected for one web service, a particular implementation for another web service must be selected. This is so called dependency constraint. Sometimes when an implementation for one web service is selected, a set of implementations for another web service must be excluded in the web service composition. This is so called conflict constraint. Thus, the optimal web service selection is a typical constrained ombinatorial optimization problem from the computational point of view. This paper proposes a new hybrid genetic algorithm for the optimal web service selection problem. The hybrid genetic algorithm has been implemented and evaluated. The evaluation results have shown that the hybrid genetic algorithm outperforms other two existing genetic algorithms when the number of web services and the number of constraints are large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.