12 resultados para BIOSPHERE
em Queensland University of Technology - ePrints Archive
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Resumo:
Water quality issues are heavily dependent on land development and management decisions within river and lake catchments or watersheds. Economic benefits of urbanisation may be short‐ lived without cleaner environmental outcomes. However, whole‐of‐catchment thinking is not, as yet, as frequent a consideration in urban planning and development in China as it is in many other countries. Water is predominantly seen as a resource to be ‘owned’ by different jurisdictions and allocated to numerous users, both within a catchment and between catchments. An alternative to this approach is to think of water in the same way as other commodities that must be kept moving through a complex transport system. Water must ultimately arrive at particular destinations in the biosphere, although it travels across a broad landscape and may be held up temporarily at certain places along the way. While water extraction can be heavily controlled, water pollution is far more difficult to regulate. Both have significant impacts on water availability and flows both now and in the future. As Chinese cities strive to improve economic conditions for their citizens, new centres are being rebuilt and environmental valued
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.
Resumo:
It is well established that literary work can promote insights that result in future change, whether on a personal or an institutional level. As Umberto Eco (1989) notes, the act of reading does not stop with the artist but continues into the work of communities. The papers delivered in this panel consider the regenerative role of literature within culture, arguing that the special properties of literature can convey an important sense of nature (Bateson 1973, Zapf 2008). These concepts are discussed in relation to writing about Australian flora and fauna. Using an ecocritical focus based on ideas about the relationship between literature and the environment the paper considers Australian works and the way in which literature enlivens this complex intersection between humans, animals and the environment. This engagement is investigated through three modes: the philosophical, the literary, and the practical. The novels discussed include Alexis Wright’s Carpentaria, Richard Flanagan’s Wanting, and Sonya Hartnett’s Forest, as well as a range of fictional and non-fictional works that describe the Blue Mountains region in New South Wales. The paper closes with a discussion of the role of story-telling as a way of introducing the public to specific environmental locations and issues.
Resumo:
This document calls on governments, civil society and in particular educators to prioritize processes that develop and strengthen education for sustainable development (ESD). The world has changed since the UN World Summit on Sustainable Development in 2002. While there have been significant initiatives and progress has been made, the scale of effort is still overshadowed by the scope of the problem. For instance, human-induced climate change is creating a long-lasting ecological crisis with severe economic and social consequences. Recently the global economic crisis has drawn attention to the problem of borrowing from resources that do not exist. Poverty, conflict and social injustice remain critical issues on the global agenda. A renewed sense of commitment to the UN Decade of Education for Sustainable Development 2005-2014 is required. Formal, informal and non-formal education and learning processes for sustainability must be strengthened and prioritized. This document supports and builds on the concepts and values that are put forward within UNESCO’s International Implementation Scheme for Education for Sustainable Development and in the Earth Charter. The purpose of ESD is to reorient education in order to contribute to a sustainable future for the common good of present and future generations. ESD recognizes the interdependence of environmental, social and economic perspectives and the dependence of humanity on a healthy biosphere. Participation and involvement are necessary components of ESD, with an emphasis on empowerment and agency for active citizenship, human rights and societal change. Re-orientation is necessary at all levels and in all phases of education, and encompasses community learning, thus making ESD a wider process challenging the form and purpose of education itself.
Resumo:
Land-use change, particularly clearing of forests for agriculture, has contributed significantly to the observed rise in atmospheric carbon dioxide concentration. Concern about the impacts on climate has led to efforts to monitor and curtail the rapid increase in concentrations of carbon dioxide and other greenhouse gases in the atmosphere. Internationally, much of the current focus is on the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). Although electing to not ratify the Protocol, Australia, as a party to the UNFCCC, reports on national greenhouse gas emissions, trends in emissions and abatement measures. In this paper we review the complex accounting rules for human activities affecting greenhouse gas fluxes in the terrestrial biosphere and explore implications and potential opportunities for managing carbon in the savanna ecosystems of northern Australia. Savannas in Australia are managed for grazing as well as for cultural and environmental values against a background of extreme climate variability and disturbance, notably fire. Methane from livestock and non-CO2 emissions from burning are important components of the total greenhouse gas emissions associated with management of savannas. International developments in carbon accounting for the terrestrial biosphere bring a requirement for better attribution of change in carbon stocks and more detailed and spatially explicit data on such characteristics of savanna ecosystems as fire regimes, production and type of fuel for burning, drivers of woody encroachment, rates of woody regrowth, stocking rates and grazing impacts. The benefits of improved biophysical information and of understanding the impacts on ecosystem function of natural factors and management options will extend beyond greenhouse accounting to better land management for multiple objectives.
Resumo:
The Echology: Making Sense of Data initiative seeks to break new ground in arts practice by asking artists to innovate with respect to a) the possible forms of data representation in public art and b) the artist's role in engaging publics on environmental sustainability in new urban developments. Initiated by ANAT and Carbon Arts in 2011, Echology has seen three artists selected by National competition in 2012 for Lend Lease sites across Australia. In 2013 commissioning of one of these works, the Mussel Choir by Natalie Jeremijenko, began in Melbourne's Victoria Harbour development. This emerging practice of data - driven and environmentally engaged public artwork presents multiple challenges to established systems of public arts production and management, at the same time as offering up new avenues for artists to forge new modes of collaboration. The experience of Echology and in particular, the Mussel Choir is examined here to reveal opportunities for expansion of this practice through identification of the factors that lead to a resilient 'ecology of part nership' between stakeholders that include science and technology researchers, education providers, city administrators, and urban developers.
Resumo:
This thesis brings together different scientific and engineering disciplines, as well as current legislation, on the subject of unwanted night-time lighting effects on humans and the biosphere. The assessment criteria of Australian Standard AS4282-1997 Control of the obtrusive effects of outdoor lighting are reviewed and criteria incorporating the quantity, quality, spectral composition of light, and exposure time, are proposed to improve light engineering practice. The immediate direct concerns of humans are considered as well as the effects on biota generally in the environment, particularly as outdoor artificial lighting proliferation has the potential to change the environment for human habitation in the longer term.