25 resultados para Atomic contacts
em Queensland University of Technology - ePrints Archive
Resumo:
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.
Resumo:
Boards of directors are thought to provide access to a wealth of knowledge and resources for the companies they serve, and are considered important to corporate governance. Under the Resource Based View (RBV) of the firm (Wernerfelt, 1984) boards are viewed as a strategic resource available to firms. As a consequence there has been a significant research effort aimed at establishing a link between board attributes and company performance. In this thesis I explore and extend the study of interlocking directorships (Mizruchi, 1996; Scott 1991a) by examining the links between directors’ opportunity networks and firm performance. Specifically, I use resource dependence theory (Pfeffer & Salancik, 1978) and social capital theory (Burt, 1980b; Coleman, 1988) as the basis for a new measure of a board’s opportunity network. I contend that both directors’ formal company ties and their social ties determine a director’s opportunity network through which they are able to access and mobilise resources for their firms. This approach is based on recent studies that suggest the measurement of interlocks at the director level, rather than at the firm level, may be a more reliable indicator of this phenomenon. This research uses publicly available data drawn from Australia’s top-105 listed companies and their directors in 1999. I employ Social Network Analysis (SNA) (Scott, 1991b) using the UCINET software to analyse the individual director’s formal and social networks. SNA is used to measure a the number of ties a director has to other directors in the top-105 company director network at both one and two degrees of separation, that is, direct ties and indirect (or ‘friend of a friend’) ties. These individual measures of director connectedness are aggregated to produce a board-level network metric for comparison with measures of a firm’s performance using multiple regression analysis. Performance is measured with accounting-based and market-based measures. Findings indicate that better-connected boards are associated with higher market-based company performance (measured by Tobin’s q). However, weaker and mostly unreliable associations were found for accounting-based performance measure ROA. Furthermore, formal (or corporate) network ties are a stronger predictor of market performance than total network ties (comprising social and corporate ties). Similarly, strong ties (connectedness at degree-1) are better predictors of performance than weak ties (connectedness at degree-2). My research makes four contributions to the literature on director interlocks. First, it extends a new way of measuring a board’s opportunity network based on the director rather than the company as the unit of interlock. Second, it establishes evidence of a relationship between market-based measures of firm performance and the connectedness of that firm’s board. Third, it establishes that director’s formal corporate ties matter more to market-based firm performance than their social ties. Fourth, it establishes that director’s strong direct ties are more important to market-based performance than weak ties. The thesis concludes with implications for research and practice, including a more speculative interpretation of these results. In particular, I raise the possibility of reverse causality – that is networked directors seek to join high-performing companies. Thus, the relationship may be a result of symbolic action by companies seeking to increase the legitimacy of their firms rather than a reflection of the social capital available to the companies. This is an important consideration worthy of future investigation.
Resumo:
The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 � 10�24 cm3/atom for PVDF and 2.5 � 10�24 cm3/atom for P(VDF-TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly cross-linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross-linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDFTrFE) compared with PVDF.
Resumo:
The effective atomic number is widely employed in radiation studies, particularly for the characterisation of interaction processes in dosimeters, biological tissues and substitute materials. Gel dosimeters are unique in that they comprise both the phantom and dosimeter material. In this work, effective atomic numbers for total and partial electron interaction processes have been calculated for the first time for a Fricke gel dosimeter, five hypoxic and nine normoxic polymer gel dosimeters. A range of biological materials are also presented for comparison. The spectrum of energies studied spans 10 keV to 100 MeV, over which the effective atomic number varies by 30 %. The effective atomic numbers of gels match those of soft tissue closely over the full energy range studied; greater disparities exist at higher energies but are typically within 4 %.
Resumo:
Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.
Resumo:
Pt/graphene nanosheet/SiC based devices are fabricated and characterized and their performances toward hydrogen gas are investigated. The graphene nanosheets are synthesized via the reduction of spray-coated graphite oxide deposited onto SiC substrates. Raman and X-ray photoelectron spectroscopies indicate incomplete reduction of the graphite oxide, resulting in partially oxidized graphene nanosheet layers of less than 10 nm thickness. The effects of interfaces on the nonlinear behavior of the Pt/graphene and graphene/SiC junctions are investigated. Current-voltage measurements of the sensors toward 1% hydrogen in synthetic air gas mixture at various temperatures ranging up to 100. ° C are performed. From the dynamic response, a voltage shift of ∼100 mV is recorded for 1% hydrogen at a constant current bias of 1 mA at 100. °C. © 2010 American Chemical Society.
Resumo:
Background Home visits (HV) provide excellent opportunities for health promotion. Aim This longitudinal study compared the effects of HV and telephone contacts (TC) in preventing early childhood caries (ECC) and colonisation of mutans streptococci (MS) and lactobacilli (LB) from 0 to 24 months. Design A total of 325 children were recruited from community health centres at mean age of 42 days, and randomly assigned to receive either HV or TC. A total of 188 children completed three, 6 monthly HV, and another 58 had three, 6 monthly TC. An additional 40 age-matched children from childcare facilities served as reference controls (RC). At 24 months, all groups were examined at a community dental clinic. Results At 24 months, three HV children of 188 (1.5%) had caries, compared to four TC of 58 (6.8%) and nine RC of 40 (22.5%) (P < 0.001 for HV versus RC; P = 0.05 for HV versus TC and P = 0.03 for TC versus RC). There were also more children with MS in the TC (47%) and RC (35%) compared to HV (28%) group (P = 0.01 and P = 0.02). Conclusions Home visits and telephone contacts conducted 6 monthly from birth are effective in reducing ECC prevalence by 24 months.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.