9 resultados para American periodicals series, 1800-1850

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The recognition of breast cancer as a spectrum tumor in Lynch syndrome remains controversial. The aim of this study was to explore features of breast cancers arising in Lynch syndrome families. Experimental Design: This observational study involved 107 cases of breast cancer identified from the Colorectal Cancer Family Registry (Colon CFR) from 90 families in which (a) both breast and colon cancer co-occurred, (b) families met either modified Amsterdam criteria, or had at least one early-onset (<50 years) colorectal cancer, and (c) breast tissue was available within the biospecimen repository for mismatch repair (MMR) testing. Eligibility criteria for enrollment in the Colon CFR are available online. Breast cancers were reviewed by one pathologist. Tumor sections were stained for MLH1, PMS2, MSH2, and MSH6, and underwent microsatellite instability testing. Results: Breast cancer arose in 35 mutation carriers, and of these, 18 (51%) showed immunohistochemical absence of MMR protein corresponding to the MMR gene mutation segregating the family. MMR-deficient breast cancers were more likely to be poorly differentiated (P = 0.005) with a high mitotic index (P = 0.002), steroid hormone receptor–negative (estrogen receptor, P = 0.031; progesterone receptor, P = 0.022), and to have peritumoral lymphocytes (P = 0.015), confluent necrosis (P = 0.002), and growth in solid sheets (P < 0.001) similar to their colorectal counterparts. No difference in age of onset was noted between the MMR-deficient and MMR-intact groups. Conclusions: MMR deficiency was identified in 51% of breast cancers arising in known mutation carriers. Breast cancer therefore may represent a valid tissue option for the detection of MMR deficiency in which spectrum tumors are lacking

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The series expansion of the plasma fields and currents in vector spherical harmonics has been demonstrated to be an efficient technique for solution of nonlinear problems in spherically bounded plasmas. Using this technique, it is possible to describe the nonlinear plasma response to the rotating high-frequency magnetic field applied to the magnetically confined plasma sphere. The effect of the external magnetic field on the current drive and field configuration is studied. The results obtained are important for continuous current drive experiments in compact toruses. © 2000 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a simulation-based density estimation technique for time series that exploits information found in covariate data. The method can be paired with a large range of parametric models used in time series estimation. We derive asymptotic properties of the estimator and illustrate attractive finite sample properties for a range of well-known econometric and financial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overview of current issues in school and system reform.