114 resultados para Algebraic functions.
em Queensland University of Technology - ePrints Archive
Resumo:
To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.
Resumo:
Sequences with optimal correlation properties are much sought after for applications in communication systems. In 1980, Alltop (\emph{IEEE Trans. Inf. Theory} 26(3):350-354, 1980) described a set of sequences based on a cubic function and showed that these sequences were optimal with respect to the known bounds on auto and crosscorrelation. Subsequently these sequences were used to construct mutually unbiased bases (MUBs), a structure of importance in quantum information theory. The key feature of this cubic function is that its difference function is a planar function. Functions with planar difference functions have been called \emph{Alltop functions}. This paper provides a new family of Alltop functions and establishes the use of Alltop functions for construction of sequence sets and MUBs.
Resumo:
Boolean functions and their Möbius transforms are involved in logical calculation, digital communications, coding theory and modern cryptography. So far, little is known about the relations of Boolean functions and their Möbius transforms. This work is composed of three parts. In the first part, we present relations between a Boolean function and its Möbius transform so as to convert the truth table/algebraic normal form (ANF) to the ANF/truth table of a function in different conditions. In the second part, we focus on the special case when a Boolean function is identical to its Möbius transform. We call such functions coincident. In the third part, we generalize the concept of coincident functions and indicate that any Boolean function has the coincidence property even it is not coincident.
Resumo:
Trivium is a stream cipher candidate of the eStream project. It has successfully moved into phase three of the selection process under the hardware category. No attacks faster than the exhaustive search have so far been reported on Trivium. Bivium-A and Bivium-B are simplified versions of Trivium that are built on the same design principles but with two registers. The simplified design is useful in investigating Trivium type ciphers with a reduced complexity and provides insight into effective attacks which could be extended to Trivium. This paper focuses on an algebraic analysis which uses the boolean satisfiability problem in propositional logic. For reduced variants of the cipher, this analysis recovers the internal state with a minimal amount of keystream observations.
Resumo:
Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean function f^c called the algebraic complement of f. This motivates us to examine AI(f ^c ). We define the extended algebraic immunity of f as AI *(f)= min {AI(f), AI(f^c )}. We prove that 0≤AI(f)–AI *(f)≤1. Since AI(f)–AI *(f)= 1 holds for a large number of cases, the difference between AI(f) and AI *(f) cannot be ignored in algebraic attacks. In the second part, we link boolean functions to hypergraphs so that we can apply known results in hypergraph theory to boolean functions. This not only allows us to find annihilators in a fast and simple way but also provides a good estimation of the upper bound on AI *(f).
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.