144 resultados para Al-Wajh Deep

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triggered by the continuing global financial crisis, most public administration systems internationally are reviewing their ability to meet public expectations in more challenging strategic environments, while satisfying the pressure from their political masters to drive down the costs of public administration. Consequently public sector organizations are under constant pressure to reform to meet not only the global economic challenges, but the need for more responsive government (Brown et al 2003). Doyle et al (2000) propose that organizational change is seldom well managed, but that the public sector faces greater difficulty in implementing corporate change than the private sector because of its unique environment, e.g. the need to deliver bureaucratically impartial outcomes. The scale of the changes required, and the constraints imposed by the context within which these changes need to occur, have intensified the need for capable public sector leadership and management. The types of capability required now extend beyond those typically required in public organizations through the efficiency drive of new public management. Acquiring these capabilities remains a key issue for public organizations. One challenge for public management, then, is leadership and management quality, including the need to recruit externally to refresh, re-energize and change the sector and its individual organizations as well as develop advanced skills among existing senior executives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of the influence of soil chemistry on soil hydraulic properties is of critical importance for the management of sodic soils under irrigation. The hydraulic conductivity of sodic soils has been shown to be affected by properties of the applied solution including pH (Suarez et al. 1984), sodicity and salt concentration (McNeal and Coleman 1966). The changes in soil hydraulic conductivity are the result of changes in the spacing between clay layers in response to changes in soil solution chemistry. While the importance o f soil chemistry in controlling hydraulic conductivity is known, the exact impacts of sodic soil amelioration on hydraulic conductivity and deep drainage at a given location are difficult to predict. This is because the relationships between soil chemical factors and hydraulic conductivity are soil specific and because local site specific factors also need to be considered to determine the actual impacts on deep drainage rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrotalcites of formula Mg6 (Fe,Al)2(OH)16(CO3).4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio have been successfully synthesised. The XRD patterns show variation in the d-spacing attributed to the size of the cation. Raman and infrared bands in the OH stretching region are assigned to (a) brucite layer OH stretching vibrations (b) water stretching bands and (c) water strongly hydrogen bonded to the carbonate anion. Multiple (CO3)2- symmetric stretching bands suggest that different types of (CO3)2- exist in the hydrotalcite interlayer. Increasing the cation ratio (Mg/Al,Fe) resulted in an increase in the combined intensity of the 2 Raman bands at around 3600 cm-1, attributed to Mg-OH stretching modes, and a shift of the overall band profile to higher wavenumbers. These observations are believed to be a result of the increase in magnesium in the structure. Raman spectroscopy shows a reduction in the symmetry of the carbonate, leading to the conclusion that the anions are bonded to the brucite-like hydroxyl surface and to the water in the interlayer. Water bending modes are identified in the infrared spectra at positions greater than 1630 cm-1, indicating the water is strongly hydrogen bonded to both the interlayer anions and the brucite-like surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we search for evidence of the existence of a sub-chondritic 142Nd/144Nd reservoir that balances the Nd isotope chemistry of the Earth relative to chondrites. If present, it may reside in the source region of deeply sourced mantle plume material. We suggest that lavas from Hawai’i with coupled elevations in 186Os/188Os and 187Os/188Os, from Iceland that represent mixing of upper mantle and lower mantle components, and from Gough with sub-chondritic 143Nd/144Nd and high 207Pb/206Pb, are favorable samples that could reflect mantle sources that have interacted with an Early-Enriched Reservoir (EER) with sub-chondritic 142Nd/144Nd. High-precision Nd isotope analyses of basalts from Hawai’i, Iceland and Gough demonstrate no discernable 142Nd/144Nd deviation from terrestrial standards. These data are consistent with previous high-precision Nd isotope analysis of recent mantle-derived samples and demonstrate that no mantle-derived material to date provides evidence for the existence of an EER in the mantle. We then evaluate mass balance in the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd. The Nd isotope systematics of EERs are modeled for different sizes and timing of formation relative to ε143Nd estimates of the reservoirs in the μ142Nd = 0 Earth, where μ142Nd is ((measured 142Nd/144Nd/terrestrial standard 142Nd/144Nd)−1 * 10−6) and the μ142Nd = 0 Earth is the proportion of the silicate Earth with 142Nd/144Nd indistinguishable from the terrestrial standard. The models indicate that it is not possible to balance the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd unless the μ142Nd = 0 Earth has a ε143Nd within error of the present-day Depleted Mid-ocean ridge basalt Mantle source (DMM). The 4567 Myr age 142Nd–143Nd isochron for the Earth intersects μ142Nd = 0 at ε143Nd of +8 ± 2 providing a minimum ε143Nd for the μ142Nd = 0 Earth. The high ε143Nd of the μ142Nd = 0 Earth is confirmed by the Nd isotope systematics of Archean mantle-derived rocks that consistently have positive ε143Nd. If the EER formed early after solar system formation (0–70 Ma) continental crust and DMM can be complementary reservoirs with respect to Nd isotopes, with no requirement for significant additional reservoirs. If the EER formed after 70 Ma then the μ142Nd = 0 Earth must have a bulk ε143Nd more radiogenic than DMM and additional high ε143Nd material is required to balance the Nd isotope systematics of the Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-authors raise two matters they consider essential for the future development of ECEfS. The first is the need to create deep foundations based in research. At a time of increasing practitioner interest, research in ECEfS is meagre. A robust research community is crucial to support quality in curriculum and pedagogy, and to promote learning and innovation in thinking and practice. The second 'essential' for the expansion and uptake of ECEfS is broad systemic change. All level within the early childhood education system - individual teachers and classrooms, whole centres and schools, professional associations and networks, accreditation and employing authorities, and teacher educators - must work together to create and reinforce the cultural and educational changes required for sustainability. This chapter provides explanations of processes to engender systemic change. It illustrates a systems approach, with reference to a recent study focused on embedding EfS into teacher education. This study emphasises the apparent contradiction that the answer to large-scale reform lies with small-scale reforms that build capacity and make connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study of student learning literature, the traditional view holds that when students are faced with heavy workload, poor teaching, and content that they cannot relate to – important aspects of the learning context, they will more likely utilise the surface approach to learning due to stresses, lack of understanding and lack of perceived relevance of the content (Kreber, 2003; Lizzio, Wilson, & Simons, 2002; Ramdsen, 1989; Ramsden, 1992; Trigwell & Prosser, 1991; Vermunt, 2005). For example, in studies involving health and medical sciences students, courses that utilised student-centred, problem-based approaches to teaching and learning were found to elicit a deeper approach to learning than the teacher-centred, transmissive approach (Patel, Groen, & Norman, 1991; Sadlo & Richardson, 2003). It is generally accepted that the line of causation runs from the learning context (or rather students’ self reported data on the learning context) to students’ learning approaches. That is, it is the learning context as revealed by students’ self-reported data that elicit the associated learning behaviour. However, other research studies also found that the same teaching and learning environment can be perceived differently by different students. In a study of students’ perceptions of assessment requirements, Sambell and McDowell (1998) found that students “are active in the reconstruction of the messages and meanings of assessment” (p. 391), and their interpretations are greatly influenced by their past experiences and motivations. In a qualitative study of Hong Kong tertiary students, Kember (2004) found that students using the surface learning approach reported heavier workload than students using the deep learning approach. According to Kember if students learn by extracting meanings from the content and making connections, they will more likely see the higher order intentions embodied in the content and the high cognitive abilities being assessed. On the other hand, if they rote-learn for the graded task, they fail to see the hierarchical relationship in the content and to connect the information. These rote-learners will tend to see the assessment as requiring memorising and regurgitation of a large amount of unconnected knowledge, which explains why they experience a high workload. Kember (2004) thus postulate that it is the learning approach that influences how students perceive workload. Campbell and her colleagues made a similar observation in their interview study of secondary students’ perceptions of teaching in the same classroom (Campbell et al., 2001). The above discussions suggest that students’ learning approaches can influence their perceptions of assessment demands and other aspects of the learning context such as relevance of content and teaching effectiveness. In other words, perceptions of elements in the teaching and learning context are endogenously determined. This study attempted to investigate the causal relationships at the individual level between learning approaches and perceptions of the learning context in economics education. In this study, students’ learning approaches and their perceptions of the learning context were measured. The elements of the learning context investigated include: teaching effectiveness, workload and content. The authors are aware of existence of other elements of the learning context, such as generic skills, goal clarity and career preparation. These aspects, however, were not within the scope of this present study and were therefore not investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength and good mechineability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline Mg alloys have not been well understood. In this work, the deformation behavior of nanocrystalline Mg-5% Al alloys was investigated using compression test, with a focus on the effects of grain size. The average grain size of the Mg-Al alloy was changed from 13 µm to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with decrease of grain size. The deformation mechanisms were also strongly dependent with the grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The urban waterfront may be regarded as the littoral frontier of human settlement. Typically, over the years, it advances, sometimes retreats, where terrestrial and aquatic processes interact and frequently contest this margin of occupation. Because most towns and cities are sited beside water bodies, many of these urban centers on or close to the sea, their physical expansion is constrained by the existence of aquatic areas in one or more directions from the core. It is usually much easier for new urban development to occur along or inland from the waterfront. Where other physical constraints, such as rugged hills or mountains, make expansion difficult or expensive, building at greater densities or construction on steep slopes is a common response. This kind of development, though technically feasible, is usually more expensive than construction on level or gently sloping land, however. Moreover, there are many reasons for developing along the shore or riverfront in preference to using sites further inland. The high cost of developing existing dry land that presents serious construction difficulties is one reason for creating new land from adjacent areas that are permanently or periodically under water. Another reason is the relatively high value of artificially created land close to the urban centre when compared with the value of existing developable space at a greater distance inland. The creation of space for development is not the only motivation for urban expansion into aquatic areas. Commonly, urban places on the margins of the sea, estuaries, rivers or great lakes are, or were once, ports where shipping played an important role in the economy. The demand for deep waterfronts to allow ships to berth and for adjacent space to accommodate various port facilities has encouraged the advance of the urban land area across marginal shallows in ports around the world. The space and locational demands of port related industry and commerce, too, have contributed to this process. Often closely related to these developments is the generation of waste, including domestic refuse, unwanted industrial by-products, site formation and demolition debris and harbor dredgings. From ancient times, the foreshore has been used as a disposal area for waste from nearby settlements, a practice that continues on a huge scale today. Land formed in this way has long been used for urban development, despite problems that can arise from the nature of the dumped material and the way in which it is deposited. Disposal of waste material is a major factor in the creation of new urban land. Pollution of the foreshore and other water margin wetlands in this way encouraged the idea that the reclamation of these areas may be desirable on public health grounds. With reference to examples from various parts of the world, the historical development of the urban littoral frontier and its effects on the morphology and character of towns and cities are illustrated and discussed. The threat of rising sea levels and the heritage value of many waterfront areas are other considerations that are addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Personal reflections on the We Al-Li Program

Relevância:

20.00% 20.00%

Publicador: