99 resultados para Agricultural robotics

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a pose estimation approach that is resilient to typical sensor failure and suitable for low cost agricultural robots. Guiding large agricultural machinery with highly accurate GPS/INS systems has become standard practice, however these systems are inappropriate for smaller, lower-cost robots. Our positioning system estimates pose by fusing data from a low-cost global positioning sensor, low-cost inertial sensors and a new technique for vision-based row tracking. The results first demonstrate that our positioning system will accurately guide a robot to perform a coverage task across a 6 hectare field. The results then demonstrate that our vision-based row tracking algorithm improves the performance of the positioning system despite long periods of precision correction signal dropout and intermittent dropouts of the entire GPS sensor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research reported in this paper explores autonomous technologies for agricultural farming application and is focused on the development of multiple-cooperative agricultural robots (AgBots). These are highly autonomous, small, lightweight, and unmanned machines that operate cooperatively (as opposed to a traditional single heavy machine) and are suited to work on broadacre land (large-scale crop operations on land parcels greater than 4,000m2). Since this is a new, and potentially disruptive technology, little is yet known about farmer attitudes towards robots, how robots might be incorporated into current farming practice, and how best to marry the capability of the robot with the work of the farmer. This paper reports preliminary insights (with a focus on farmer-robot control) gathered from field visits and contextual interviews with farmers, and contributes knowledge that will enable further work toward the design and application of agricultural robotics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5th International Conference on Field and Service Robotics (FSR05) was held in Port Douglas, Australia, on 29th - 31st July 2005, and brought together the worlds' leading experts in field and service automation. The goal of the conference was to report and encourage the latest research and practical results towards the use of field and service robotics in the community with particular focus on proven technology. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. Field robots are robots which operate in outdoor, complex, and dynamic environments. Service robots are those that work closely with humans, with particular applications involving indoor and structured environments. There are a wide range of topics presented in this issue on field and service robots including: Agricultural and Forestry Robotics, Mining and Exploration Robots, Robots for Construction, Security & Defence Robots, Cleaning Robots, Autonomous Underwater Vehicles and Autonomous Flying Robots. This meeting was the fifth in the series and brings FSR back to Australia where it was first held. FSR has been held every 2 years, starting with Canberra 1997, followed by Pittsburgh 1999, Helsinki 2001 and Lake Yamanaka 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Smarty Board; a new micro-controller board designed specifically for the robotics teaching needs of Australian schools. The primary motivation for this work was the lack of commercially available and cheap controller boards that would have all their components including interfaces on a single board. Having a single board simplifies the construction of programmable robots that can be used as platforms for teaching and learning robotics. Reducing the cost of the board as much as possible was one of the main design objectives. The target user groups for this device are the secondary and tertiary students, and hobbyists. Previous studies have shown that equipment cost is one of the major obstacles for teaching robotics in Australia. The new controller board was demonstrated at high-school seminars. In these demonstrations the new controller board was used for controlling two robots that we built. These robots are available as kits. Given the strong demand from high-school teachers, new kits will be developed for the next robotic Olympiad to be held in Australia in 2006.