379 resultados para Agricultural and Biosystems Engineering

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an experiment that was conducted to determine the extent to which group dynamics impacts on the effectiveness of software development teams. The experiment was conducted on software engineering project students at the Queensland University of Technology (QUT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project explores how interdisciplinary art practices can provide ways for questioning and envisaging alternative modes of coexistence between humans and the non-humans who together, make up the environment. As a practiceled project, it combines a body of creative work (50%) and this exegesis (50%). My interdisciplinary artistic practice appropriates methods and processes from science and engineering and merges them into artistic contexts for critical and poetic ends. By blending pseudo-scientific experimentation with creative strategies like visual fiction, humour, absurd public performance and scripted audience participation, my work engages with a range of debates around ecology. This exegesis details the interplay between critical theory relating to these debates, the work of other creative practitioners and my own evolving artistic practice. Through utilising methods and processes drawn from my prior career in water engineering, I present an interdisciplinary synthesis that seeks to promote improved understandings of the causes and consequences of our ecological actions and inactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research addresses how an understanding of the fundamentals of economics will better inform general journalists who report on issues or events affecting rural and regional Australia. The research draws on practice-based experience of the author, formal economics studies, interviews with news editors from Australian television news organisations, and interviews from leading economists. A guidebook has also been written to help journalists apply economic theories to their reporting. The guidebook enables reporters to think strategically and consider the 'big picture' when they inform society about policies, commodity trade, the environment, or any issues involving rural and regional Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food waste is a current challenge that both developing and developed countries face. This project applied a novel combination of available methods in Mechanical, agricultural and food engineering to address these challenges. A systematic approach was devised to investigate possibilities of reducing food waste and increasing the efficiency of industry by applying engineering concepts and theories including experimental, mathematical and computational modelling methods. This study highlights the impact of comprehensive understanding of agricultural and food material response to the mechanical operations and its direct relation to the volume of food wasted globally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Science, technology, engineering and mathematics (STEM) has become an educational package emerging throughout the world (e.g. UK, China, US & Australia). Although science, technology and mathematics are taught in schools and engineering education occurs in universities, there appear to be few if any explicit engineering education programs in primary and junior secondary schools. A stronger inclusion of engineering education at these levels could assist students to make informed decisions about career opportunities in STEM-related fields. This paper suggests how engineering education can be integrated with other key learning areas such as English, mathematics, science, history and geography within the new Australian Curriculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We do not commonly associate software engineering with philosophical debate. Indeed, software engineers ought to be concerned with building software systems and not settling philosophical questions. I attempt to show that software engineers do, in fact, take philosophical sides when designing software applications. In particular, I look at how the problem of vagueness arises in software engineering and argue that when software engineers solve it, they commit to philosophical views that they are seldom aware of. In the second part of the paper, I suggest a way of dealing with vague predicates without having to confront the problem of vagueness itself. The purpose of my paper is to highlight the currently prevalent disconnect between philosophy and software engineering. I claim that a better knowledge of the philosophical debate is important as it can have ramifications for crucial software design decisions. Better awareness of philosophical issues not only produces better software engineers, it also produces better engineered products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.