342 resultados para Adverse Drug Reactions
em Queensland University of Technology - ePrints Archive
Resumo:
The accumulation of deficits with increasing age results in a decline in the functional capacity of multiple organs and systems. These changes can have a significant influence on the pharmacokinetics and pharmacodynamics of prescribed drugs. Although alterations in body composition and worsening renal clearance are important considerations, for most drugs the liver has the greatest effect on metabolism. Age-related change in hepatic function thereby causes much of the variability in older people’s responses to medication. In this review, we propose that a decline in the ability of the liver to inactivate toxins may contribute to a proinflammatory state in which frailty can develop. Since inflammation also downregulates drug metabolism, medication prescribed to frail older people in accordance with disease-specific guidelines may undergo reduced systemic clearance, leading to adverse drug reactions, further functional decline and increasing polypharmacy, exacerbating rather than ameliorating frailty status. We also describe how increasing chronological age and frailty status impact liver size, blood flow and protein binding and enzymes of drug metabolism. This is used to contextualise our discussion of appropriate prescribing practices. For example, while the general axiom of ‘start low, go slow’ should underpin the initiation of medication (titrating to a defined therapeutic goal), it is important to consider whether drug clearance is flow or capacity-limited. By summarising the effect of age-related changes in hepatic function on medications commonly used in older people, we aim to provide a guide that will have high clinical utility for practising geriatricians.
Resumo:
An open-label, inpatient study was undertaken to compare the efficacy of two oral rehydration solutions (ORS) given randomly to children aged 1-10 years who had acute gastroenteritis with mild or moderate dehydration (n = 45). One solution contained 60 mmol/L sodium and 1.8% glucose, total osmolality 240 mosm/l (gastrolyte, Rhone-poulenc, Rorer) and the other contained 26 mmol/l sodium, 2.7% glucose and 3.6% sucrose, total osmolality 340 mOsm/l (Glucolyte, Gilseal). Analysis of data indicated that Gastrolyte therapy resulted in significantly fewer episodes and volume of vomiting over all time periods in comparison to Glucolyte and significantly less stool volume during the first 8 h and in the 0-24 h period. The differences between treatments in degree of dehydration at each follow-up period, duration of diarrhea, and duration of hospital stay were not significant. No adverse drug reactions occurred. Six patients received intravenous rehydration treatment and were considered treatment failures. We conclude that oral rehydration therapy is safe and efficacious in the management of dehydration in acute diarrhoea and that the lower osmolar rehydration solution has clinically marginal advantages.
Resumo:
An open-label inpatient study is in progress to compare the efficacy and safety of two oral rehydration solutions in children and infants with acute diarrhea and mild to moderate dehydration. One solution (ORS-60) contains 60 mmol/L of sodium and 1.8% glucose, with a total osmolatity of 240 mosm/kg; the other (ORS-26) contains 26 mmol/L of sodium, 2.7% glucose, and 3.6% sucrose, with a total osmolality of 340 mosm/kg. An outcome analysis of 28 children with gastroenteritis indicated that ORS-60 (n = 13) reduced stool volume during the first eight hours after admission to a significantly greater (P < 0.05) extent than did ORS-26 (n = 15). Diarrhea had ceased by 24 hours in 64% of ORS-60 patients but in only 31% of ORS-26 patients, and the patients' clinical conidition was improved at eight hours in 84% of ORS-60 patients versus 60% of ORS-26 patients. Differences between treatments in degree of dehydration at each follow-up point, total duration of diarrhea, and duration of hospital stay were not detected. No adverse drug reactions occurred. Four patients received intravenous rehydration therapy, but none was considered a treatment failure. We conclude that the lower osmolar solution, ORS-60, conferred earlier recovey and reduced continuing fluid losses in the management of gastroenteritis.
Resumo:
Despite the severe challenges which are posed by the loss of a close friend or relative, bereavement has a relatively benign outcome in most cases. While the majority of patients cope with bereavement, a significant minority develop problems. A behavioural approach may help the bereaved avoid adverse grief reactions.
Resumo:
Metastatic melanoma, a cancer historically refractory to chemotherapeutic strategies, has a poor prognosis and accounts for the majority of skin cancer related mortality. Although the recent approval of two new drugs combating this disease, Ipilimumab and Vemurafenib (PLX4032), has demonstrated for the first time in decades an improvement in overall survival; the clinical efficacy of these drugs has been marred by severe adverse immune reactions and acquired drug resistance in patients, respectively. Thus, understanding the etiology of metastatic melanoma will contribute to the improvement of current therapeutic strategies while leading to the development of novel drug approaches. In order to identify recurrently mutated genes of therapeutic relevance in metastatic melanoma, a panel of stage III local lymph node melanomas were extensively characterised using high-throughput genomic technologies. This led to the identification of mutations in TFG in 5% of melanomas from a candidate gene sequencing approach using SNP array analysis, 24% of melanomas with mutations in MAP3K5 or MAP3K9 though unbiased whole-exome sequencing strategies, and inactivating mutations in NF1 in BRAF/NRAS wild type tumours though pathway analysis. Lastly, this thesis describes the development of a melanoma specific mutation panel that can rapidly identify clinically relevant mutation profiles that could guide effective treatment strategies through a personalised therapeutic approach. These findings are discussed in respect to a number of important issues raised by this study including the current limitation of next-generation sequencing technology, the difficulty in identifying ‘driver’ mutations critical to the development of melanoma due to high carcinogenic exposure by UV radiation, and the ultimate application of mutation screening in a personalised therapeutic setting. In summary, a number novel genes involved in metastatic melanoma have been identified that may have relevance for current therapeutic strategies in treating this disease.
Resumo:
BACKGROUND Providing clinical pharmacy services to patients in their homes after discharge from hospital has been reported to reduce health care costs and improve outcomes. The Medication Management Program of the Fraser Health Authority involves pharmacists making home visits to provide clinical pharmacy services to elderly patients who have recently been discharged from hospital and others considered to be at high risk for adverse drug events. Although clinical and economic outcomes of this program have been evaluated, humanistic outcomes such as satisfaction have not been assessed. Moreover, very little evaluation of patient satisfaction with home pharmacy services has been reported in the literature. OBJECTIVE To evaluate patient satisfaction with the Medication Management Program. METHODS A telephone survey instrument, consisting of 7 Likert-scale items and 2 open-ended questions, was developed and administered to patients who received a home pharmacist visit between September 1 and November 23, 2011. In addition to the survey responses, demographic and clinical data for both respondents and nonrespondents were collected. RESULTS Of the 175 patients invited to participate in the survey, 103 (58.9%) agreed to participate. The majority of respondents agreed or strongly agreed with all of the survey items, indicating satisfaction with the program. For example, 97 (94%) agreed or strongly agreed that they would recommend the pharmacist home visit program continue to be available, and all 103 (100%) agreed or strongly agreed that they were satisfied with the pharmacist home visit. Respondents provided some suggestions for program improvement. CONCLUSIONS The survey findings demonstrate that patients were satisfied with the home clinical pharmacy services offered through the Fraser Health Medication Management Program.
Solid medication dosage form modification at the bedside and in the pharmacy of Queensland hospitals
Resumo:
A case report of a 920 g infant developing a small intestinal obstruction following therapy for congestive cardiac failure is presented. Although the causation was thought to be milk curd obstruction, subsequent analysis revealed high concentration of calcium and phosphate in the stools. The possible pathogenesis is discussed in relation to the inspissated milk syndrome.
Resumo:
Experience suggests that the central anticholinergic action of promethazine is a major element in the toxic effects following overdosage. Physostigmine seems to be a direct antidote at doses within the safe therapeutic range; side-effects, if they become a problem, can be treated with intravenous atropine.
Resumo:
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Resumo:
Single nucleotide polymorphisms (SNPs) are unique genetic differences between individuals that contribute in significant ways to the determination of human variation including physical characteristics like height and appearance as well as less obvious traits such as personality, behaviour and disease susceptibility. SNPs can also significantly influence responses to pharmacotherapy and whether drugs will produce adverse reactions. The development of new drugs can be made far cheaper and more rapid by selecting participants in drug trials based on their genetically determined response to drugs. Technology that can rapidly and inexpensively genotype thousands of samples for thousands of SNPs at a time is therefore in high demand. With the completion of the human genome project, about 12 million true SNPs have been identified to date. However, most have not yet been associated with disease susceptibility or drug response. Testing for the appropriate drug response SNPs in a patient requiring treatment would enable individualised therapy with the right drug and dose administered correctly the first time. Many pharmaceutical companies are also interested in identifying SNPs associated with polygenic traits so novel therapeutic targets can be discovered. This review focuses on technologies that can be used for genotyping known SNPs as well as for the discovery of novel SNPs associated with drug response.
Resumo:
To the Editor—Diphtheria-tetanus-pertussis whole-cell (DTwP) and acellular (DTaP) vaccines are the 2 main pertussis-contained vaccines. DTwP, developed in the 1930s, has contributed to the reduction of pertussis, but has often been associated with vaccine-related adverse reactions (ARs) [1]. This had severely affected the public confidence in immunization programs, followed by decreased vaccine coverage and pertussis outbreaks in many industrialized countries in the 1970s [2]. DTaP, which was developed in the 1980s and replaced DTwP in developed countries in the 1990s, has been associated with fewer ARs due to removal/reduction of endotoxin [1]. China began replacing DTwP with DTaP in its national immunization programs in December 2007, and its passive Adverse Events Following Immunization (AEFI) surveillance system was established in 2005 [3]. The Intergovernmental Panel on Climate Change Fifth Assessment Report indicates that the planet is warming at...
Resumo:
The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 906-919, 2009
Resumo:
To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.