17 resultados para ANTHRACENE

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the design and synthesis of isoindigo based low band gap polymer semiconductors, poly{N,N′-(2-octyldodecyl)-isoindigo-alt- naphthalene} (PISD-NAP) and poly{N,N′-(2-octyldodecyl)-isoindigo-alt- anthracene} (PISD-ANT). A series of donor-acceptor (D-A) copolymers can be prepared where donor and acceptor conjugated blocks can be attached alternately using organometallic coupling. In these polymers, an isoindigo dye acceptor moiety has been attached alternately with naphthalene and anthracene donor comonomer blocks by Suzuki coupling. PISD-NAP and PISD-ANT exhibit excellent solution processibility and good film-forming properties. Gel permeation chromatography exhibits a higher molecular mass with lower polydispersity. UV-vis-NIR absorption of these polymers exhibits a wide absorption band ranging from 300 nm to 800 nm, indicating the low band gap nature of the polymers. Optical band gaps calculated from the solid state absorption cutoff value for PISD-NAP and PISD-ANT are around 1.80 eV and 1.75 eV, respectively. Highest occupied molecular orbital (HOMO) values calculated respectively for PISD-NAP and PISD-ANT thin films on glass substrate by photoelectron spectroscopy in air (PESA) are 5.66 eV and 5.53 eV, indicative of the good stability of these materials in organic electronic device applications. These polymers exhibit p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices in ambient conditions. The highest hole mobility of 0.013 cm2 V-1 s-1 is achieved in top contact and bottom-gate OTFT devices for PISD-ANT, whereas polymer PISD-NAP exhibited a hole mobility of 0.004 cm2 V -1 s-1. When these polymer semiconductors were used as a donor and PC71BM as an acceptor in OPV devices, the highest power conversion efficiency (PCE) of 1.13% is obtained for the PISD-ANT polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD project has expanded the knowledge in the area of profluorescent nitroxides with regard to the synthesis and characterisations of novel profluorescent nitroxide probes as well as physical characterisation of the probe molecules in various polymer/physical environments. The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, was described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation. In addition to the parent TMAO, 5 other azaphenalene derivatives were successfully synthesised. This new class of nitroxide was expected to have interesting redox properties when the structure was investigated by high-level ab initio molecular orbitals theory. This was expected to have implications with biological relevance as the calculated redox potentials for the azaphenalene ring class would make them potent antioxidant compounds. The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrroline, piperidine, isoindoline and azaphenalene) were determined by cyclic voltammetry in acetonitrile. It was shown that potentials related to the one electron processes of the nitroxide were influenced by the type of ring system, ring substituents or groups surrounding the moiety. Favourable comparisons were found between theoretical and experimental potentials for pyrroline, piperidine and isoindoline ring classes. Substitution of these ring classes, were correctly calculated to have a small yet predictable effect on the potentials. The redox potentials of the azaphenalene ring class were underestimated by the calculations in all cases by at least a factor of two. This is believed to be due to another process influencing the redox potentials of the azaphenalene ring class which is not taken into account by the theoretical model. It was also possible to demonstrate the use of both azaphenalene and isoindoline nitroxides as additives for monitoring radical mediated damage that occurs in polypropylene as well as in more commercially relevant polyester resins. Polymer sample doped with nitroxide were exposed to both thermo-and photo-oxidative conditions with all nitroxides showing a protective effect. It was found that isoindoline nitroxides were able to indicate radical formation in polypropylene aged at elevated temperatures via fluorescence build-up. The azaphenalene nitroxide TMAO showed no such build-up of fluorescence. This was believed to be due to the more labile bond between the nitroxide and macromolecule and the protection may occur through a classical Denisov cycle, as is expected for commercially available HAS units. Finally, A new profluorescent dinitroxide, BTMIOA (9,10-bis(1,1,3,3- tetramethylisoindolin-2-yloxyl-5-yl)anthracene), was synthesised and shown to be a powerful probe for detecting changes during the initial stages of thermo-oxidative degradation of polypropylene. This probe, which contains a 9,10-diphenylanthracene core linked to two nitroxides, possesses strongly suppressed fluorescence due to quenching by the two nitroxide groups. This molecule also showed the greatest protective effect on thermo-oxidativly aged polypropylene. Most importantly, BTMIOA was found to be a valuable tool for imaging and mapping free-radical generation in polypropylene using fluorescence microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exchange reactions between the isoindoline profluorescent nitroxide 1,1,3,3-tetramethyldibenzo[e,g]isoindolin-2-yloxyl (TMDBIO) and a TEMPO capped polystyrene were carried out. High conversions to the desired products were achieved using only stoichiometric ratios of nitroxide relative to polymer. The scope of this study was expanded by exploiting a di-nitroxide 9,10-bis(5-[1,1,3,3-tetramethylisoindolin-2-yloxy])anthracene (BTMIOA) as a connector between two polymer chains forming PS–nitroxide–PS systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge of the light brigade: A molecule is able to walk back and forth upon a five-foothold pentaethylenimine track without external intervention. The 1D random walk is highly processive (mean step number 530) and exchange takes place between adjacent amine groups in a stepwise fashion. The walker performs a simple task whilst walking: quenching of the fluorescence of an anthracene group sited at one end of the track. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Type 1 Neurofibromatosis (NF1) is a genetic disorder linked to mutations of the NF1 gene. Clinical symptoms are varied, but hallmark features of the disease include skin pigmentation anomalies (café au lait macules, skinfold freckling) and dermal neurofibromas. Method These dermal manifestations of NF1 have previously been reported in a mouse model where Nf1+/− mice are topically treated with dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). We adopted this mouse model to test the protective effects of a nitroxide antioxidant, 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO). Antioxidants have previously been shown to increase longevity in nf1-deficient fruitflies. Doses of 4 μM and 40 μM CTMIO provided ad libitum in drinking water were given to Nf1-deficient mice. Results Consistent with previous reports, Nf1-deficient mice showed a 4.7-fold increase in papilloma formation (P < 0.036). However, neither dose of CTMIO had any significant affect on papilloma formation. A non-significant decrease in skin pigmentation abnormalities was seen with 4 μM but not 40 μM CTMIO. Subsequent analysis of genomic DNA isolated from papillomas indicated that DMBA/TPA induced tumors did not exhibit a local loss of heterozygosity (LOH) at the Nf1 locus. Conclusion These data reveal that oral antioxidant therapy with CTMIO does not reduce tumor formation in a multistage cancer model, but also that this model does not feature LOH for Nf1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/ osteonectin/BM-40 is a matricellular protein implicated in development, cell transformation and tumorigenesis. We have examined the role of SPARC in cell transformation induced chemically with 7,12-dimethylbenz[a]anthracene (DMBA) and 12- tetradecanoylphorbol-13-acetate (TPA) in embryonic fibroblasts and in the skin of mice. Embryonic fibroblasts from SPARCnull mice showed increases in cell proliferation, enhanced sensitivity to DMBA and a higher number of DMBA/TPA-induced transformation foci. The number of DMBA-DNA adducts was 9 times higher in SPARCnull fibroblasts and their stability was lower than wild-type fibroblasts, consistent with a reduction in excision repair cross-complementing 1 the nucleotide excision repair enzyme in these cells. The SPARCnull mice showed an increase in both the speed and number of papillomas forming after topical administration of DMBA/TPA to the skin. These papillomas showed reduced growth and reduced progression to a more malignant phenotype, indicating that the effect of SPARC on tumorigenesis depends upon the transformation stage and/or tissue context. These data reinforce a growing number of observations in which SPARC has shown opposite effects on different tumor types/stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report design, synthesis and characterization of solution processable low band gap polymer semiconductors, poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-phenylene} (PDPP-FPF), poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene} (PDPP-FNF) and poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-anthracene} (PDPP-FAF) using the furan-containing 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) building block. As DBF acts as an acceptor moiety, a series of donor-acceptor (D-A) copolymers can be generated when it is attached alternatively with phenylene, naphthalene or anthracene donor comonomer blocks. Optical and electrochemical characterization of thin films of these polymers reveals band gaps in the range of 1.55-1.64 eV. These polymers exhibit excellent hole mobility when used as the active layer in organic thin-film transistor (OTFT) devices. Among the series, the highest hole mobility of 0.11 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices using PDPP-FNF. When these polymers are used as a donor and [70]PCBM as the acceptor in organic photovoltaic (OPV) devices, power conversion efficiencies (PCE) of 2.5 and 2.6% are obtained for PDPP-FAF and PDPP-FNF polymers, respectively. Such mobility values in OTFTs and performance in OPV make furan-containing DBF a very promising block for designing new polymer semiconductors for a wide range of organic electronic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The population exposed to potentially hazardous substances through inappropriate and unsafe management practices related to disposal and recycling of end-of-life electrical and electronic equipment, collectively known as e-waste, is increasing. We aimed to summarise the evidence for the association between such exposures and adverse health outcomes. Methods We systematically searched five electronic databases (PubMed, Embase, Web of Science, PsycNET, and CINAHL) for studies assessing the association between exposure to e-waste and outcomes related to mental health and neurodevelopment, physical health, education, and violence and criminal behaviour, from Jan 1, 1965, to Dec 17, 2012, and yielded 2274 records. Of the 165 full-text articles assessed for eligibility, we excluded a further 142, resulting in the inclusion of 23 published epidemiological studies that met the predetermined criteria. All studies were from southeast China. We assessed evidence of a causal association between exposure to e-waste and health outcomes within the Bradford Hill framework. Findings We recorded plausible outcomes associated with exposure to e-waste including change in thyroid function, changes in cellular expression and function, adverse neonatal outcomes, changes in temperament and behaviour, and decreased lung function. Boys aged 8–9 years living in an e-waste recycling town had a lower forced vital capacity than did those living in a control town. Significant negative correlations between blood chromium concentrations and forced vital capacity in children aged 11 and 13 years were also reported. Findings from most studies showed increases in spontaneous abortions, stillbirths, and premature births, and reduced birthweights and birth lengths associated with exposure to e-waste. People living in e-waste recycling towns or working in e-waste recycling had evidence of greater DNA damage than did those living in control towns. Studies of the effects of exposure to e-waste on thyroid function were not consistent. One study related exposure to e-waste and waste electrical and electronic equipment to educational outcomes. Interpretation Although data suggest that exposure to e-waste is harmful to health, more well designed epidemiological investigations in vulnerable populations, especially pregnant women and children, are needed to confirm these associations. Funding Children's Health and Environment Program, Queensland Children's Medical Research Institute, The University of Queensland, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Keywords: organic solar cell; organic photovoltaic; diketopyrrolopyrrole; chemical doping; spectroelectrochemistry; photoinduced absorption; hole polaron

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h−1 for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively