4 resultados para 90-589
em Queensland University of Technology - ePrints Archive
Resumo:
Two kinds of coal-bearing kaolinite from China were analysed by X-ray diffraction (XRD), Thermogravimetric analysis-mass spectrometry (TG-MS), infrared emission spectroscopy. Thermal decomposition occurs in a series of steps attributed to (a) desorption of water at 68 °C for Datong coal bearing strata kaolinite and 56 °C for Xiaoxian with mass losses of 0.36 % and 0.51 % (b) decarbonization at 456 °C for Datong coal bearing strata kaolinite and 431 °C for Xiaoxian kaolinite, (c) dehydroxylation takes place in two steps at 589 and 633 °C for Datong coal bearing strata kaolinite and at 507 °C and 579 °C for Xiaoxian kaolinite. This mineral were further characterised by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed. At 650 °C all intensity in these bands is lost in harmony with the thermal analysis results. Characteristic functional groups from coal are observed at 1918, 1724 and 1459 cm-1. The intensity of these bands decrease by thermal treatment and is lost by 700 °C.
Resumo:
An historical analysis of the management of the arts in Australia in the last fifty years demonstrates clearly the problems faced by arts organisations which have poorly selected and trained Boards of Directors. Traditionally Board members were selected because they represented the various facets and skills involved in business (marketing, law, accountancy, management, entrepreneurship) or they were arts practitioners or patrons, or they had some particular social standing. Arts organisations recruited Board members like a "mixed bag of lollies - one of these and one of those". No consideration was given to the vital qualities of enthusiasm, reliability, empathy, capacity for hard work, strong arts interest, effective communication skills and respect for organisational processes.
Resumo:
Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.
Resumo:
We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.