384 resultados para 3-SUBSTITUTED LACTAMS

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

18.1 Antibiotics 18.1.1 Introduction to bacteria 18.1.2 Introduction to antibiotics 18.1.3 Inhibitors of bacterial cell wall synthesis 18.1.3.1 β-Lactams 18.1.3.2 Glycopeptides 18.1.4 Inhibitors of bacterial protein synthesis 18.1.4.1 Tetracyclines 18.1.4.2 Aminoglycosides 18.1.4.3 Chloramphenicol 18.1.4.4 Macrolides 18.1.4.5 Lincosamides 18.1.4.6 Oxalazidones 18.1.5 Inhibitors of DNA synthesis 18.2. Anti-tuberculotic drugs 18.2.1 Introduction 18.2.2 Isoniazid 18.2.3 Ethambutol 18.2.4 Rifamycin 18.2.5 Pyrazinamide 18.3. Anti-viral drugs 18.3.1 Introduction to viruses 18.3.2 Drugs used to treat herpesviruses 18.3.3 Drugs used to treat the flu 18.3.4 Drugs used to treat HIV/AIDS 18.4. Antifungal drugs 18.4.1 Introduction to Fungi 18.4.2 Antifungal drugs

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octahedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the molecule with a mer geometry of the S atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the structure of the title compound, [Mg(H2O)6]2+ 2(C7H5O6S-). 2(H2O), the octahedral complex cations lie on crystallographic inversion centres and are hydrogen-bonded through the coordinated waters to the substituted benzenesulfonate monoanions and the water molecules of solvation, and together with a carboxylic acid O-H...O(sulfonate) association, give a three-dimensional structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of the compounds from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with 4-chloroaniline [rac-N-(4-chlorophenyl)-2-carboxycycloclohexane-1-carboxamide] (1), 4-bromoaniline [2-(4-bromophenyl)-perhydroisoindolyl-1,3-dione] (2) and 3-hydroxy-4-carboxyaniline (5-aminosalicylic acid) [2-(3-hydroxy-4-carboxyphenyl)-perhydroisoindolyl-1,3-dione] (3) have been determined at 200 K. Crystals of the open-chain amide carboxylic acid 1 are orthorhombic, space group Pbcn, with unit cell dimensions a = 20.1753(10), b = 8.6267(4), c = 15.9940(9) Å, and Z = 8. Compounds 2 and 3 are cyclic imides, with 1 monoclinic having space group P21 and cell dimensions a = 11.5321(3), b = 6.7095(2), c = 17.2040(5) Å, β = 102.527(3)o. Compound 3 is orthorhombic with cell dimensions a = 6.4642(3), b = 12.8196(5), c = 16.4197(7) Å. Molecules of 1 form hydrogen-bonded cyclic dimers which are extended into a two-dimensional layered structure through amide-group associations: 3 forms into one-dimensional zigzag chains through carboxylic acid…imide O-atom hydrogen bonds, while compound 2 is essentially unassociated. With both cyclic imides 2 and 3, disorder is found which involves the presence of partial enantiomeric replacement of the cis-cyclohexane-1,2-substituted ring systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sedimentary palygorskite (SP) and hydrothermal palygorskite (HP) were characterized by XRF, TG/DSC, andXRD. The total iron and dissociative iron in palygorskite were detected using spectrophotometry. The results showed that about 3.57 wt% of Fe2O3 was detected in SP in contrast with 0.4 wt% in HP. SP was a Fe-substituted palygorskite, and HP was an Al-rich palygorskite. The occurrence of Fe substitution in SP resulted in two mass loss steps of coordinated water and resulted in a larger d spacing. The SP showed greater thermal stability than the HP. It was proposed the change of (200) diffraction peak and (240) diffraction peak reflect changes of tetrahedral and octahedral structures in palygorskite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of several carboxy-substituted hexahydro-1,4:5,8-diepoxynaphthalenes have been solved with X-ray crystallography, in some cases confirming previously contentious structures. The compounds of interest are constructed in efficient one-step 2 × [4+2] cycloaddition reactions from furan and acetylene carboxylate derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the structure of the title complex [Cs(C8H4Cl3O2)(H2O)]n, the Cs salt of the commercial herbicide fenac [(2,3,6-trichlorophenyl)acetic acid], the irregular eight-coordination about Cs+ comprises a bidentate chelate (O:Cl) interaction involving a carboxyl O-atom and an ortho-related ring substituted Cl atom which is also bridging, a triple-bridging carboxyl O-atom and a bridging water molecule. A two-dimensional sheet polymer is generated, lying parallel to (100), within which there are water O---H...O(carboxyl) hydrogen-bonding interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fused aromatic furan-substituted diketopyrrolopyrrole and novel diphenylfumaronitrile conjugated building blocks are used for the synthesis of an alternating copolymer (DPFN-DPPF) via Suzuki polycondensation. In this paper, the first attempt to use the diphenylfumaronitrile building block for the synthesis of conjugated polymer is described. The number-average and weight-average molecular weights calculated for DPFN-DPPF are 20?661 and 66?346 g mol-1, respectively. The optical bandgap calculated for DPFN-DPPF is 1.53 eV whereas the highest occupied molecular orbital (HOMO) value calculated by photoelectron spectroscopy in air (PESA) is 5.50 eV. The calculated HOMO value is lower, which is suitable for stable organic electronic devices. DPFN-DPPF polymer is used as an active layer in bottom-contact bottom-gate organic thin-film transistor devices and the thin film exhibits a hole mobility of 0.20 cm2 V-1 s-1 in air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of acid-catalyzed hydrolysis of seven methylated aliphatic epoxides - R1R2C(O)CR3R4 (A: R1=R2=R3=R4=H; B: R1=R2=R3=H, R4=Me; C: R1=R2=H, R3=R4=Me; D: R1=R3=H, R2=R4=Me(trans); E: R1=R3=H, R2=R4=Me(cis); F: R1=R3=R4=Me, R2=H; G: R1=R2=R3=R4=Me) - has been studied at 36 ± 1.5°C. Compounds with two methyl groups at the same carbon atom of the oxirane ring exhibit highest rate constants (k(eff) in reciprocal molar concentration per second: 11.0 ± 1.3 for C, 10.7 ± 2.1 for F, and 8.7 ± 0.7 for G as opposed to 0.124 ± 0.003 for B, 0.305 ± 0.003 for D, and 0.635 ± 0.036 for E). Ethylene oxide (A) displays the lowest rate of hydrolysis (0.027 M-1 s-1). The results are consistent with literature data available for compounds A, B, and C. To model the reactivities we have employed quantum chemical calculations (MNDO, AM1, PM3, and MINDO/3) of the main reaction species. There is a correlation of the logarithm k(eff) with the total energy of epoxide ring opening. The best correlation coefficients (r) were obtained using the AM1 and MNDO methods (0.966 and 0.957, respectively). However, unlike MNDO, AM1 predicts approximately zero energy barriers for the oxirane ring opening of compounds B, C, E and G, which is not consistent with published kinetic data. Thus, the MNDO method provides a preferential means of modeling the acidic hydrolysis of the series of methylated oxiranes. The general ranking of mutagenicity in vitro, A > B > C, is in line with the concept that this sequence also gradually leaves the expoxide reactivity optimal for genotoxicity toward reactivities leading to higher biological detoxifications.