114 resultados para 3-DIMENSIONAL CEPHALOMETRY
em Queensland University of Technology - ePrints Archive
Resumo:
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Resumo:
This study aimed to develop a 3-Dimensional (D) hydrogel system for the co-culture of autologous human renal and immune cells. Previous studies have shown that human renal epithelial cells are able to modulate autologous immune cell responses. However, these studies were undertaken in a standard 2D culture system. The 3D model was developed to re-capitulate these observations within a more physiological relevant in vivo like environment.
Resumo:
It has previously been found that complexes comprised of vitronectin and growth factors (VN:GF) enhance keratinocyte protein synthesis and migration. More specifically, these complexes have been shown to significantly enhance the migration of dermal keratinocytes derived from human skin. In view of this, it was thought that these complexes may hold potential as a novel therapy for healing chronic wounds. However, there was no evidence indicating that the VN:GF complexes would retain their effect on keratinocytes in the presence of chronic wound fluid. The studies in this thesis demonstrate for the first time that the VN:GF complexes not only stimulate proliferation and migration of keratinocytes, but also these effects are maintained in the presence of chronic wound fluid in a 2-dimensional (2-D) cell culture model. Whilst the 2-D culture system provided insights into how the cells might respond to the VN:GF complexes, this investigative approach is not ideal as skin is a 3-dimensional (3-D) tissue. In view of this, a 3-D human skin equivalent (HSE) model, which reflects more closely the in vivo environment, was used to test the VN:GF complexes on epidermopoiesis. These studies revealed that the VN:GF complexes enable keratinocytes to migrate, proliferate and differentiate on a de-epidermalised dermis (DED), ultimately forming a fully stratified epidermis. In addition, fibroblasts were seeded on DED and shown to migrate into the DED in the presence of the VN:GF complexes and hyaluronic acid, another important biological factor in the wound healing cascade. This HSE model was then further developed to enable studies examining the potential of the VN:GF complexes in epidermal wound healing. Specifically, a reproducible partial-thickness HSE wound model was created in fully-defined media and monitored as it healed. In this situation, the VN:GF complexes were shown to significantly enhance keratinocyte migration and proliferation, as well as differentiation. This model was also subsequently utilized to assess the wound healing potential of a synthetic fibrin-like gel that had previously been demonstrated to bind growth factors. Of note, keratinocyte re-epitheliasation was shown to be markedly improved in the presence of this 3-D matrix, highlighting its future potential for use as a delivery vehicle for the VN:GF complexes. Furthermore, this synthetic fibrin-like gel was injected into a 4 mm diameter full-thickness wound created in the HSE, both keratinocytes and fibroblasts were shown to migrate into this gel, as revealed by immunofluorescence. Interestingly, keratinocyte migration into this matrix was found to be dependent upon the presence of the fibroblasts. Taken together, these data indicate that reproducible wounds, as created in the HSEs, provide a relevant ex vivo tool to assess potential wound healing therapies. Moreover, the models will decrease our reliance on animals for scientific experimentation. Additionally, it is clear that these models will significantly assist in the development of novel treatments, such as the VN:GF complexes and the synthetic fibrin-like gel described herein, ultimately facilitating their clinical trial in the treatment of chronic wounds.
Resumo:
Purpose: To determine the extent to which the accuracy of magnetic resonance imaging (MRI) based virtual 3-dimensional (3D) models of the intact orbit can approach that of the gold standard, computed tomography (CT) based models. The goal was to determine whether MRI is a viable alternative to CT scans in patients with isolated orbital fractures and penetrating eye injuries, pediatric patients, and patients requiring multiple scans in whom radiation exposure is ideally limited. Materials and Methods: Patients who presented with unilateral orbital fractures to the Royal Brisbane and Women’s Hospital from March 2011 to March 2012 were recruited to participate in this cross-sectional study. The primary predictor variable was the imaging technique (MRI vs CT). The outcome measurements were orbital volume (primary outcome) and geometric intraorbital surface deviations (secondary outcome)between the MRI- and CT-based 3D models. Results: Eleven subjects (9 male) were enrolled. The patients’ mean age was 30 years. On average, the MRI models underestimated the orbital volume of the CT models by 0.50 0.19 cm3 . The average intraorbital surface deviation between the MRI and CT models was 0.34 0.32 mm, with 78 2.7% of the surface within a tolerance of 0.5 mm. Conclusions: The volumetric differences of the MRI models are comparable to reported results from CT models. The intraorbital MRI surface deviations are smaller than the accepted tolerance for orbital surgical reconstructions. Therefore, the authors believe that MRI is an accurate radiation-free alternative to CT for the primary imaging and 3D reconstruction of the bony orbit. �
Resumo:
The design of a building is a complicated process, having to formulate diverse components through unique tasks involving different personalities and organisations in order to satisfy multi-faceted client requirements. To do this successfully, the project team must encapsulate an integrated design that accommodates various social, economic and legislative factors. Therefore, in this era of increasing global competition integrated design has been increasingly recognised as a solution to deliver value to clients.----- The ‘From 3D to nD modelling’ project at the University of Salford aims to support integrated design; to enable and equip the design and construction industry with a tool that allows users to create, share, contemplate and apply knowledge from multiple perspectives of user requirements (accessibility, maintainability, sustainability, acoustics, crime, energy simulation, scheduling, costing etc.). Thus taking the concept of 3-dimensional computer modelling of the built environment to an almost infinite number of dimensions, to cope with whole-life construction and asset management issues in the design of modern buildings. This paper reports on the development of a vision for how integrated environments that will allow nD-enabled construction and asset management to be undertaken. The project is funded by a four-year platform grant from the Engineering and Physical Sciences Research Council (EPSRC) in the UK; thus awarded to a multi-disciplinary research team, to enable flexibility in the research strategy and to produce leading innovation. This paper reports on the development of a business process and IT vision for how integrated environments will allow nD-enabled construction and asset management to be undertaken. It further develops many of the key issues of a future vision arising from previous CIB W78 conferences.
Resumo:
The primary aims of scoliosis surgery are to halt the progression of the deformity, and to reduce its severity (cosmesis). Currently, deformity correction is measured in terms of posterior parameters (Cobb angles and rib hump), even though the cosmetic concern for most patients is anterior chest wall deformity. In this study, we propose a new measure for assessing anterior chest wall deformity and examine the correlation between rib hump and the new measure. 22 sets of CT scans were retrieved from the QUT/Mater Paediatric Spinal Research Database. The Image J software (NIH) was used to manipulate formatted CT scans into 3-dimensional anterior chest wall reconstructions. A ‘chest wall angle’ was then measured in relation to the first sacral vertebral body. The chest wall angle was found to be a reliable tool in the analysis of chest wall deformity. No correlation was found between the new measure and rib hump angle. Since rib hump has been shown to correlate with vertebral rotation on CT, this suggests that there maybe no correlation between anterior and posterior deformity measures. While most surgical procedures will adequately address the coronal imbalance & posterior rib hump elements of scoliosis, they do not reliably alter the anterior chest wall shape. This implies that anterior chest wall deformity is to a large degree an intrinsic deformity, not directly related to vertebral rotation.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
Purpose To assess the repeatability and validity of lens densitometry derived from the Pentacam Scheimpflug imaging system. Setting Eye Clinic, Queensland University of Technology, Brisbane, Australia. Methods This prospective cross-sectional study evaluated 1 eye of subjects with or without cataract. Scheimpflug measurements and slitlamp and retroillumination photographs were taken through a dilated pupil. Lenses were graded with the Lens Opacities Classification System III. Intraobserver and interobserver reliability of 3 observers performing 3 repeated Scheimpflug lens densitometry measurements each was assessed. Three lens densitometry metrics were evaluated: linear, for which a line was drawn through the visual axis and a mean lens densitometry value given; peak, which is the point at which lens densitometry is greatest on the densitogram; 3-dimensional (3D), in which a fixed, circular 3.0 mm area of the lens is selected and a mean lens densitometry value given. Bland and Altman analysis of repeatability for multiple measures was applied; results were reported as the repeatability coefficient and relative repeatability (RR). Results Twenty eyes were evaluated. Repeatability was high. Overall, interobserver repeatability was marginally lower than intraobserver repeatability. The peak was the least reliable metric (RR 37.31%) and 3D, the most reliable (RR 5.88%). Intraobserver and interobserver lens densitometry values in the cataract group were slightly less repeatable than in the noncataract group. Conclusion The intraobserver and interobserver repeatability of Scheimpflug lens densitometry was high in eyes with cataract and eyes without cataract, which supports the use of automated lens density scoring using the Scheimpflug system evaluated in the study
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
The little grey cat engine (greyCat) is part of a series of projects which explore software which can enable access to the potentially empowering nature of represented space and game design. GreyCat is the result of research into the culture of the software itself in order to provide participatory environments which enable the telling of ‘small stories’ – stories and experiences which are those of the everyday or those of a cultural perspective other than that prioritised by most world building softwares or game engines. GreyCat offers a simple framework which allows participants to use their own image materials (photographs for the most part) as a basis for spatial exploration of their own places.---------- Truna aka j.turner (2008) The little grey cat engine: telling small stories (Demo), Australasian Computer Human Interaction Conference, OZCHI 2008, December 8th-12th, Cairns, Australia---------- Research Publications: truna aka j.turner & Browning, D. (2009) Designing spatial story telling software, in proceedings OZCHI09, Melbourne---------- Truna aka j.turner, Browning, D. & Champion, E. (2008) Designing for Engaged Experience, In proceedings Australasian Computer Human Interaction Conference, OZCHI 2008, December 8th-12th, Cairns, Australia---------- Truna aka. J.turner & Bidwell, N. (2007) Through the looking glass: game worlds as representations and views from elsewhere, Proceedings of the 4th Australasian conference on Interactive entertainment, Melbourne, Australia---------- Truna aka j.turner, Browning, D & Bidwell, N. (2007) Wanderer beyond game worlds, in proceedings, Hutchinson, A (ed) PerthDAC 2007: The seventh International Digital Arts and Culture Conference: The future of digital media culture, 15-18 September 2007, Perth, Australia, Curtin University of Technology---------- Truna aka j.turner (2006) To explore strange new worlds: experience design in 3 dimensional immersive environments - role and place in a world as object of interaction, In proceedings, Australasian Computer Human Interaction Conference, OZCHI 2006, November 22nd-24th, Sydney, Australia, November 20th – 24th 2006, pp 26- 29---------- Truna aka j.turner (2006) Digital songlines environment (Demonstration), In proceedings 2006 International conference on Game research and development, Perth, Australia---------- Truna aka j.turner (2006) Destination Space: Experiential Spatiality and Stories, Special Session on Experiential Spatiality, In proceedings 2006 International conference on Game research and development, Perth, Australia
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.
Resumo:
The exchange of design models in the design and construction industry is evolving away from 2-dimensional computer-aided design (CAD) and paper towards semantically-rich 3-dimensional digital models. This approach, known as Building Information Modelling (BIM), is anticipated to become the primary means of information exchange between the various parties involved in construction projects. From a technical perspective, the domain represents an interesting study in model-based interoperability, since the models are large and complex, and the industry is one in which collaboration is a vital part of business. In this paper, we present our experiences with issues of model-based interoperability in exchanging building information models between various tools, and in implementing tools which consume BIM models, particularly using the industry standard IFC data modelling format. We report on the successes and challenges in these endeavours, as the industry endeavours to move further towards fully digitised information exchange.
Resumo:
Hydrogels provide a 3-dimensional network for embedded cells and offer promise for cartilage tissue engineering applications. Nature-derived hydrogels, including alginate, have been shown to enhance the chondrocyte phenotype but are variable and not entirely controllable. Synthetic hydrogels, including polyethylene glycol (PEG)-based matrices, have the advantage of repeatability and modularity; mechanical stiffness, cell adhesion, and degradability can be altered independently. In this study, we compared the long-term in vitro effects of different hydrogels (alginate and Factor XIIIa-cross-linked MMP-sensitive PEG at two stiffness levels) on the behavior of expanded human chondrocytes and the development of construct properties. Monolayer-expanded human chondrocytes remained viable throughout culture, but morphology varied greatly in different hydrogels. Chondrocytes were characteristically round in alginate but mostly spread in PEG gels at both concentrations. Chondrogenic gene (COL2A1, aggrecan) expression increased in all hydrogels, but alginate constructs had much higher expression levels of these genes (up to 90-fold for COL2A1), as well as proteoglycan 4, a functional marker of the superficial zone. Also, chondrocytes expressed COL1A1 and COL10A1, indicative of de-differentiation and hypertrophy. After 12 weeks, constructs with lower polymer content were stiffer than similar constructs with higher polymer content, with the highest compressive modulus measured in 2.5% PEG gels. Different materials and polymer concentrations have markedly different potency to affect chondrocyte behavior. While synthetic hydrogels offer many advantages over natural materials such as alginate, they must be further optimized to elicit desired chondrocyte responses for use as cartilage models and for development of functional tissue-engineered articular cartilage.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.