6 resultados para 1550 nm

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrichment of marine organics in remote marine aerosols can influence their ability to act as cloud condensation nuclei (CCN), which are sites for water vapour to condense into cloud droplets. This project identified the composition and hygroscopicity of sea spray aerosol (SSA) formed at the ocean surface due to bursting of entrained air bubbles. SSA from organically enriched waters in the southwest Pacific and Southern Oceans were investigated. Results indicate that current emission schemes may not adequately predict SSA CCN, influencing the representation of cloud formation in climate modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded many-core architectures contain dozens to hundreds of CPU cores that are connected via a highly scalable NoC interconnect. Our Multiprocessor-System-on-Chip CoreVAMPSoC combines the advantages of tightly coupled bus-based communication with the scalability of NoC approaches by adding a CPU cluster as an additional level of hierarchy. In this work, we analyze different cluster interconnect implementations with 8 to 32 CPUs and compare them in terms of resource requirements and performance to hierarchical NoCs approaches. Using 28nm FD-SOI technology the area requirement for 32 CPUs and AXI crossbar is 5.59mm2 including 23.61% for the interconnect at a clock frequency of 830 MHz. In comparison, a hierarchical MPSoC with 4 CPU cluster and 8 CPUs in each cluster requires only 4.83mm2 including 11.61% for the interconnect. To evaluate the performance, we use a compiler for streaming applications to map programs to the different MPSoC configurations. We use this approach for a design-space exploration to find the most efficient architecture and partitioning for an application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100 nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7–8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF > 2 and another at HGF~1.5. The particles with HGF > 2 displayed a deliquescent transition at 73–75% RH and were nonvolatile up to 280°C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3–13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11–46%. Observed high inorganic fractions in sub-100 nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16–97 nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100 nm particle number, corresponding to concentrations of 110–290 cm−3. Air mass back trajectories indicate that SSA particles were produced 1500 km, 20–40 h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100 nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.