3 resultados para Área Marinha Protegida (AMP)

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that induction of MMP-2 activation by Concanavalin A (ConA) in MDA-MB-231 human breast cancer cells involves both transcriptional and post-transcriptional mechanisms, and that the continuous presence of ConA is required for MMP-2 activation (Yu et al. Cancer Res, 55, 3272-7, 1995). In an effort to identify signal transduction pathways which may either contribute to or modulate this mechanism, we found that three different cAMP-inducing agents, cholera toxin (CT), forskolin (FSK), and 3- isobutyl-1-methylxanthine (IBMX) partially inhibited ConA-induced MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. Combinations of CT or FSK with IBMX exhibited additive effects on reduction of MT1-MMP mRNA expression and MMP-2 activation. Agents which increase cAMP levels appeared to target transcriptional aspects of ConA induction, reducing MT1-MMP mRNA and protein in parallel with the reduced MMP-2 activation. In the absence of ConA, down-regulation of constitutive production of MT1-MMP mRNA and protein was observed, indicating that cAMP acts independently of ConA. These observations may help to elucidate factors regulating MT1-MMP expression, which may be pivotal to the elaboration of invasive machinery on the cell surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peritubular zone of the rat testis has an extensive extracellular matrix (ECM). Fibronectin (FN) is distributed primarily in the basal lamina of the seminiferous tubule boundary tissue and is synthesized by peritubular myoid cells. Several extracellular changes are mediated by growth factors and these changes occur at the time of hormone mediated testicular development, particularly in the peritubular zone. The effects of serum or dibutyryl cyclic AMP (cAMP) on FN production by the mesenchymal peritubular myoid cells were evaluated. Rats of various ages (10, 15, 20, 40 and 80 days) were employed for immunofluorescent localization of rat testicular FN in frozen sections. In all age groups tested, FN was primarily present in a broad layer around each seminiferous tubule, and blood vessel, and in variable distribution throughout the interstitial stroma. By day 20 there was no clear distinction in FN staining between the peritubular zone and the interstitial tissue. This indicates an involvement of FN in the ECM developments which occur in the peritubular zone of the testis at this time. The peritubular myoid cells were isolated from 20-22 day old rat testis and cultured on glass coverslips. These cells were grown to confluence with 10% fetal calf serum (FCS) in medium until day 4 and then subcultured to have secondary monocultures maintained with or without serum. By means of immunofluorescence and cytochemistry using avidin-biotin peroxidase complex it was observed that peritubular myoid cells were positive for FN and most of the FN was localized in the perinuclear region. Subcultured peritubular myoid cells maintained for 4 days in medium containing FCS developed an extensive interconnecting FN matrix. In the presence of 0.5 mM cAMP in culture, FN became localized along the filamentous process of peritubular myoid cells and more prominently in the areas of triangulated multi-cell aggregates as well as on the surface of the contracted small spherical cells. The addition of cAMP in the presence of FCS, also caused a noticeable change in the staining pattern; FN was detected along the filamentous process developing into a complex network of cells encased in an extensive matrix. It would appear that the translocation of FN in the cytoplasmic extensions of peritubular myoid cells may be a direct consequence of morphological changes associated with metabolic regulation of cAMP. This may also be related to the puberty associated development of in vivo changes in the ECM produced by peritubular myoid cells.