458 resultados para worlds ahead
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
A hybrid genetic algorithm/scaled conjugate gradient regularisation method is designed to alleviate ANN `over-fitting'. In application to day-ahead load forecasting, the proposed algorithm performs better than early-stopping and Bayesian regularisation, showing promising initial results.
Resumo:
The Patches program involves Malaysian pre-service teachers working closely with Australian pre-service teachers on a series of academic and intercultural communication tasks. A recurring problem for international students is the challenge to develop social relationships with Australian students. Similarly, it is often difficult for Australian students to step outside their accustomed social worlds to establish relationships with international students. The Patches Program supported rich cross-cultural social and academic exchanges among the students facilitating the development of students' academic literacy skills, their knowledge of self and knowledge of learning, and their skills in cross-cultural communication.
Resumo:
In this paper, we draw on accounts from students to inform a Middle Schooling movement that has been variously described as "arrested", "unfinished" and "exhausted". We propose that if the Middle Schooling movement is to understand the changing worlds of students and develop new approaches in the middle years of schooling, then it is important to draw on the insights that individual students can provide by conducting research with "students-as-informants". The early adolescent informants to this paper report high hopes for their futures (despite their lower socio-economic surroundings), which reinforces the importance of supporting successful learner identities and highlights the role of schooling in the decline of adolescent student aspirations. However, their insights did not stop at the individual learner, with students also identifying cultural and structural constraints to reform. As such, we argue that students may be both an important resource for inquiry into individual school reform and for the Middle Schooling movement internationally.
Resumo:
Sustainable development has long been promoted as the best answer to the world’s environmental problems. This term has generated mass appeal as it implies that both the development of the built environment and its associated resource consumption can be achieved without jeopardising the natural environment. In the urban context, sustainability issues have been reflected in the promotion of sustainable urban development, which emphasises the sensible exploitation of scarce natural resources for urbanisation in a manner that allows future generations to repeat the process. This chapter highlights attempts to promote sustainable urban development through an integration of three important considerations: planning, development and the ecosystem. It highlights the fact that spatial planning processes were traditionally driven by economic and social objectives, and rarely involved promoting the sustainability agenda to achieve a sustainable urban future. As a result, rapid urbanisation has created a variety of pressures on the ecosystem upon which we rely. It is believed that the integration of the urban planning and development processes within the limitations of the ecosystem, monitored by a sustainability assessment mechanism, would offer a better approach to maintaining sustainable resource use without compromising urban development.
Resumo:
In this world of continuous change, there’s probably one certainty: more change lies ahead. Our students will encounter challenges and opportunities that we can’t even imagine. How do we prepare our students as future citizens for the challenges of the 21st century? One of the most influential public intellectuals of our time, Howard Gardner, suggests that in the future individuals will depend to a great extent on the capacity to synthesise large amounts of information. ‘They will need to be able to gather together information from disparate sources and put it together in ways that work for themselves and can be communicated to other persons’(Gardner 2008, p. xiii). One of the first steps in ‘putting things together’ so they ‘work’ in the mind is ‘to group objects and events together on the basis of some similarity between them’ (Lee & das Gupta 1995, p. 116). When we do this and give them a collective name, we are conceptualising. Apart from helping to save our sanity by simplifying the vast amounts of data we encounter every day, concepts help us to understand and gain meaning from what we experience. Concepts are essential for synthesising information and they also help us to communicate with others. Put simply, concepts serve as building blocks for knowledge, understanding and communication. This chapter addresses the importance of teaching and learning about concepts and conceptual development in studies of society and environment. It proceeds as follows: first, it considers how individuals use concepts, and, second, it explores the characteristics of concepts; the third section presents a discussion of approaches that might be adopted by teachers intending to help their students build concepts in the classroom.
Resumo:
Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.
Resumo:
“You need to be able to tell stories. Illustration is a literature, not a pure fine art. It’s the fine art of writing with pictures.” – Gregory Rogers. This paper reads two recent wordless picture books by Australian illustrator Gregory Rogers in order to consider how “Shakespeare” is produced as a complex object of consumption for the implied child reader: The Boy, The Bear, The Baron, The Bard (2004) and Midsummer Knight (2006). In these books other worlds are constructed via time-travel and travel to a fantasy world, and clearly presume reader competence in narrative temporality and structure, and cultural literacy (particularly in reference to Elizabethan London and William Shakespeare), even as they challenge normative concepts via use of the fantastic. Exploring both narrative sequences and individual images reveals a tension in the books between past and present, and real and imagined. Where children’s texts tend to privilege Shakespeare, the man and his works, as inherently valuable, Rogers’s work complicates any sense of cultural value. Even as these picture books depend on a lexicon of Shakespearean images for meaning and coherence, they represent William Shakespeare as both an enemy to children (The Boy), and a national traitor (Midsummer). The protagonists, a boy in the first book and the bear he rescues in the second, effect political change by defeating Shakespeare. However, where these texts might seem to be activating a postcolonial cultural critique, this is complicated both by presumed readerly competence in authorized cultural discourses and by repeated affirmation of monarchies as ideal political systems. Power, then, in these picture books is at once rewarded and withheld, in a dialectic of (possibly postcolonial) agency, and (arguably colonial) subjection, even as they challenge dominant valuations of “Shakespeare” they do not challenge understandings of the “Child”.
Resumo:
Web applications such as blogs, wikis, video and photo sharing sites, and social networking systems have been termed ‘Web 2.0’ to highlight an arguably more open, collaborative, personalisable, and therefore more participatory internet experience than what had previously been possible. Giving rise to a culture of participation, an increasing number of these social applications are now available on mobile phones where they take advantage of device-specific features such as sensors, location and context awareness. This international volume of book chapters will make a contribution towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods and practices of social and mobile technology that enable participation and engagement. It brings together an international group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis, twitter, blogging, virtual worlds, shared displays and urban sceens, and their impact to foster community activism, civic engagement and cultural citizenship.
Resumo:
INTRODUCTION: Since the introduction of its QUT ePrints institutional repository of published research outputs, together with the world’s first mandate for author contributions to an institutional repository, Queensland University of Technology (QUT) has been a leader in support of green road open access. With QUT ePrints providing our mechanism for supporting the green road to open access, QUT has since then also continued to expand its secondary open access strategy supporting gold road open access, which is also designed to assist QUT researchers to maximise the accessibility and so impact of their research. ---------- METHODS: QUT Library has adopted the position of selectively supporting true gold road open access publishing by using the Library Resource Allocation budget to pay the author publication fees for QUT authors wishing to publish in the open access journals of a range of publishers including BioMed Central, Public Library of Science and Hindawi. QUT Library has been careful to support only true open access publishers and not those open access publishers with hybrid models which “double dip” by charging authors publication fees and libraries subscription fees for the same journal content. QUT Library has maintained a watch on the growing number of open access journals available from gold road open access publishers and their increased rate of success as measured by publication impact. ---------- RESULTS: This paper reports on the successes and challenges of QUT’s efforts to support true gold road open access publishers and promote these publishing strategy options to researchers at QUT. The number and spread of QUT papers submitted and published in the journals of each publisher is provided. Citation counts for papers and authors are also presented and analysed, with the intention of identifying the benefits to accessibility and research impact for early career and established researchers.---------- CONCLUSIONS: QUT Library is eager to continue and further develop support for this publishing strategy, and makes a number of recommendations to other research institutions, on how they can best achieve success with this strategy.
Resumo:
The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.
Resumo:
ADAM Cass's I Love You, Bro is an engaging portrayal of just how far some young people can go in constructing fantasy worlds online. The play is, according to Cass, based on the case of two teenage boys in Britain in the early 2000s. Troubled teen Johnny lives at home with his mother and her new partner. Lurking in an online chat room one day, he strikes up a conversation with MarkyMark, a slightly older soccer-playing boy from the popular crowd in his own local town, who mistakes him for a girl. The plot unfolds from this one moment of mistaken identity. Johnny concocts an increasingly tenuous series of characters, plot twists and intrigues to try to maintain his relationship with MarkyMark and deal with the lie at the heart of his first love, eventually conspiring - as he tells us from the first moment - to cause his own murder.
Resumo:
Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel.
Resumo:
As the world’s rural populations continue to migrate from farmland to sprawling cities, transport networks form an impenetrable maze within which monocultures of urban form erupt from the spaces in‐between. These urban monocultures are as problematic to human activity in cities as cropping monocultures are to ecosystems in regional landscapes. In China, the speed of urbanisation is exacerbating the production of mono‐functional private and public spaces. Edges are tightly controlled. Barriers and management practices at these boundaries are discouraging the formation of new synergistic relationships, critical in the long‐term stability of ecosystems that host urban habitats. Some urban planners, engineers, urban designers, architects and landscape architects have recognised these shortcomings in contemporary Chinese cities. The ideology of sustainability, while critically debated, is bringing together thinking people in these and other professions under the umbrella of an ecological ethic. This essay aims to apply landscape ecology theory, a conceptual framework used by many professionals involved in land development processes, to a concept being developed by BAU International called Networks Cities: a city with its various land uses arranged in nets of continuity, adjacency, and superposition. It will consider six lesser‐known concepts in relation to creating enhanced human activity along (un)structured edges between proposed nets and suggest new frontiers that might be challenged in an eco‐city. Ecological theory suggests that sustaining biodiversity in regions and landscapes depends on habitat distribution patterns. Flora and fauna biologists have long studied edge habitats and have been confounded by the paradox that maximising the breadth of edges is detrimental to specialist species but favourable to generalist species. Generalist species of plants and animals tolerate frequent change in the landscape, frequenting two or more habitats for their survival. Specialist species are less tolerant of change, having specific habitat requirements during their life cycle. Protecting species richness then may be at odds with increasing mixed habitats or mixed‐use zones that are dynamic places where diverse activities occur. Forman (1995) in his book Land Mosaics however argues that these two objectives of land use management are entirely compatible. He postulates that an edge may be comprised of many small patches, corridors or convoluting boundaries of large patches. Many ecocentrists now consider humans to be just another species inhabiting the ecological environments of our cities. Hence habitat distribution theory may be useful in planning and designing better human habitats in a rapidly urbanising context like China. In less‐constructed environments, boundaries and edges provide important opportunities for the movement of multi‐habitat species into, along and from adjacent land use areas. For instance, invasive plants may escape into a national park from domestic gardens while wildlife may forage on garden plants in adjoining residential areas. It is at these interfaces that human interactions too flow backward and forward between land types. Spray applications of substances by farmers on cropland may disturb neighbouring homeowners while suburban residents may help themselves to farm produce on neighbouring orchards. Edge environments are some of the most dynamic and contested spaces in the landscape. Since most of us require access to at least two or three habitats diurnally, weekly, monthly or seasonally, their proximity to each other becomes critical in our attempts to improve the sustainability of our cities.
Resumo:
“What did you think you were doing?” Was the question posed by the conference organizers to me as the inventor and constructor of the first working Tangible Interfaces over 40 years ago. I think the question was intended to encourage me to talk about the underlying ideas and intentionality rather than describe an endless sequence of electronic bricks and that is what I shall do in this presentation. In the sixties the prevalent idea for a graphics interface was an analogue with sketching which was to somehow be understood by the computer as three dimensional form. I rebelled against this notion for reasons which I will explain in the presentation and instead came up with tangible physical three dimensional intelligent objects. I called these first prototypes “Intelligent Physical Modelling Systems” which is a really dumb name for an obvious concept. I am eternally grateful to Hiroshi Ishii for coining the term “Tangible User Interfaces” - the same idea but with a much smarter name. Another motivator was user involvement in the design process, and that led to the Generator (1979) project with Cedric Price for the world’s first intelligent building capable of organizing itself in response to the appetites of the users. The working model of that project is in MoMA. And the same motivation led to a self builders design kit (1980) for Walter Segal which facilitated self-builders to design their own houses. And indeed as the organizer’s question implied, the motivation and intentionality of these projects developed over the years in step with advancing technology. The speaker will attempt to articulate these changes with medical, psychological and educational examples. Much of this later work indeed stemming from the Media Lab where we are talking. Related topics such as “tangible thinking” and “intelligent teacups” will be introduced and the presentation will end with some speculations for the future. The presentation will be given against a background of images of early prototypes many of which have never been previously published.