170 resultados para wide area measurement system (WAMS)
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.
Resumo:
Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.
Resumo:
Freeways are divided roadways designed to facilitate the uninterrupted movement of motor vehicles. However, many freeways now experience demand flows in excess of capacity, leading to recurrent congestion. The Highway Capacity Manual (TRB, 1994) uses empirical macroscopic relationships between speed, flow and density to quantify freeway operations and performance. Capacity may be predicted as the maximum uncongested flow achievable. Although they are effective tools for design and analysis, macroscopic models lack an understanding of the nature of processes taking place in the system. Szwed and Smith (1972, 1974) and Makigami and Matsuo (1990) have shown that microscopic modelling is also applicable to freeway operations. Such models facilitate an understanding of the processes whilst providing for the assessment of performance, through measures of capacity and delay. However, these models are limited to only a few circumstances. The aim of this study was to produce more comprehensive and practical microscopic models. These models were required to accurately portray the mechanisms of freeway operations at the specific locations under consideration. The models needed to be able to be calibrated using data acquired at these locations. The output of the models needed to be able to be validated with data acquired at these sites. Therefore, the outputs should be truly descriptive of the performance of the facility. A theoretical basis needed to underlie the form of these models, rather than empiricism, which is the case for the macroscopic models currently used. And the models needed to be adaptable to variable operating conditions, so that they may be applied, where possible, to other similar systems and facilities. It was not possible to produce a stand-alone model which is applicable to all facilities and locations, in this single study, however the scene has been set for the application of the models to a much broader range of operating conditions. Opportunities for further development of the models were identified, and procedures provided for the calibration and validation of the models to a wide range of conditions. The models developed, do however, have limitations in their applicability. Only uncongested operations were studied and represented. Driver behaviour in Brisbane was applied to the models. Different mechanisms are likely in other locations due to variability in road rules and driving cultures. Not all manoeuvres evident were modelled. Some unusual manoeuvres were considered unwarranted to model. However the models developed contain the principal processes of freeway operations, merging and lane changing. Gap acceptance theory was applied to these critical operations to assess freeway performance. Gap acceptance theory was found to be applicable to merging, however the major stream, the kerb lane traffic, exercises only a limited priority over the minor stream, the on-ramp traffic. Theory was established to account for this activity. Kerb lane drivers were also found to change to the median lane where possible, to assist coincident mergers. The net limited priority model accounts for this by predicting a reduced major stream flow rate, which excludes lane changers. Cowan's M3 model as calibrated for both streams. On-ramp and total upstream flow are required as input. Relationships between proportion of headways greater than 1 s and flow differed for on-ramps where traffic leaves signalised intersections and unsignalised intersections. Constant departure onramp metering was also modelled. Minimum follow-on times of 1 to 1.2 s were calibrated. Critical gaps were shown to lie between the minimum follow-on time, and the sum of the minimum follow-on time and the 1 s minimum headway. Limited priority capacity and other boundary relationships were established by Troutbeck (1995). The minimum average minor stream delay and corresponding proportion of drivers delayed were quantified theoretically in this study. A simulation model was constructed to predict intermediate minor and major stream delays across all minor and major stream flows. Pseudo-empirical relationships were established to predict average delays. Major stream average delays are limited to 0.5 s, insignificant compared with minor stream delay, which reach infinity at capacity. Minor stream delays were shown to be less when unsignalised intersections are located upstream of on-ramps than signalised intersections, and less still when ramp metering is installed. Smaller delays correspond to improved merge area performance. A more tangible performance measure, the distribution of distances required to merge, was established by including design speeds. This distribution can be measured to validate the model. Merging probabilities can be predicted for given taper lengths, a most useful performance measure. This model was also shown to be applicable to lane changing. Tolerable limits to merging probabilities require calibration. From these, practical capacities can be estimated. Further calibration is required of traffic inputs, critical gap and minimum follow-on time, for both merging and lane changing. A general relationship to predict proportion of drivers delayed requires development. These models can then be used to complement existing macroscopic models to assess performance, and provide further insight into the nature of operations.
Resumo:
This report examines the involvement of manufacturers in value-adding through service-enhancement of product offerings. This focus has been prompted by: emphasis in the knowledge-economy literature on the increasing role played by services in economic growth; and recent analysis which suggests that the most dynamic sector of many economies is an integrated manufacturing-services sector (see Part One of this report). The report initially describes the emergence of an integrated manufacturing-services sector in the context of increasingly knowledge-based economic systems. Part Two reports on the results of a survey of manufacturers in the building and construction product system, investigating their involvement in service provision. Parts Three and Four present two case studies of exemplary manufacturers involved in adding value to their manufacturing operations through services offered on building and construction projects. The report examines manufacturers of materials, products, equipment and machinery used on building and construction projects. The two case study sections of the report, in part, focus on a major project undertaken by each of the manufacturers. This project element of activity is focussed on (as opposed to wholesale or retail supply), because this area of activity involves a broader array of service-enhancement mechanisms and more complex bundling of products and services.
Resumo:
A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.
Resumo:
Food microstructure represents the way their elements arrangement and their interaction. Researchers in this field benefit from identifying new methods of examination of the microstructure and analysing the images. Experiments were undertaken to study micro-structural changes of food material during drying. Micro-structural images were obtained for potato samples of cubical shape at different moisture contents during drying using scanning electron microscopy. Physical parameters such as cell wall perimeter, and area were calculated using an image identification algorithm, based on edge detection and morphological operators. The algorithm was developed using Matlab.
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Resumo:
Circuit breaker restrikes are unwanted occurrence, which can ultimately lead to breaker. Before 2008, there was little evidence in the literature of monitoring techniques based on restrike measurement and interpretation produced during switching of capacitor banks and shunt reactor banks. In 2008 a non-intrusive radiometric restrike measurement method, as well a restrike hardware detection algorithm was developed. The limitations of the radiometric measurement method are a band limited frequency response as well as limitations in amplitude determination. Current detection methods and algorithms required the use of wide bandwidth current transformers and voltage dividers. A novel non-intrusive restrike diagnostic algorithm using ATP (Alternative Transient Program) and wavelet transforms is proposed. Wavelet transforms are the most common use in signal processing, which is divided into two tests, i.e. restrike detection and energy level based on deteriorated waveforms in different types of restrike. A ‘db5’ wavelet was selected in the tests as it gave a 97% correct diagnostic rate evaluated using a database of diagnostic signatures. This was also tested using restrike waveforms simulated under different network parameters which gave a 92% correct diagnostic responses. The diagnostic technique and methodology developed in this research can be applied to any power monitoring system with slight modification for restrike detection.
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
This research-in-progress paper reports preliminary findings of a study that is designed to identify characteristics of an expert in the discipline of Information Systems (IS). The paper delivers a formative research model to depict characteristics of an expert with three additive constructs, using concepts derived from psychology, knowledge management and social-behaviour research. The paper then explores the formation and application ‘expertise’ using four investigative questions in the context of System Evaluations. Data have been gathered from 220 respondents representing three medium sized companies in India, using the SAP Enterprise Resource Planning system. The paper summarizes planned data analyses in construct validation, model testing and model application. A validated construct of expertise of IS will have a wide range of implications for research and practice.
Resumo:
Knowledge base is one of the emerging concepts in the Knowledge Management area. As there exists no agreed- upon standard definition of a knowledge base, this paper defines a knowledge base in terms of our research of Enterprise Systems (ES). The knowledge base is defined with reference to Learning Network Theory. Using this theoretical framework, we investigate the roles of management and operational staff in organisations and how their interactions can create a better ES-knowledge base to contribute to ES success. We focus on the post- implementation phase of ES as part of the ES lifecycle. Our findings will facilitate future research directions and contribute to better understandings of how the knowledge base can be integrated and how this integration leads to Enterprise System success.
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.