793 resultados para supervisory control
Resumo:
This paper proposes new droop control methods for load sharing in a rural area with distributed generation. Highly resistive lines, typical of rural low voltage networks, always create a big challenge for conventional droop control. To overcome the conflict between higher feedback gain for better power sharing and system stability in angle droop, two control methods have been proposed. The first method considers no communication among the distributed generators (DGs) and regulates the converter output voltage and angle ensuring proper sharing of load in a system having strong coupling between real and reactive power due to high line resistance. The second method, based on a smattering of communication, modifies the reference output volt-age angle of the DGs depending on the active and reactive power flow in the lines connected to point of common coupling (PCC). It is shown that with the second proposed control method, an economical and minimum communication system can achieve significant improvement in load sharing. The difference in error margin between proposed control schemes and a more costly high bandwidth communication system is small and the later may not be justified considering the increase in cost. The proposed control shows stable operation of the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
This paper shows how the power quality can be improved in a microgrid that is supplying a nonlinear and unbalanced load. The microgrid contains a hybrid combination of inertial and converter interfaced distributed generation units where a decentralized power sharing algorithm is used to control its power management. One of the distributed generators in the microgrid is used as a power quality compensator for the unbalanced and harmonic load. The current reference generation for power quality improvement takes into account the active and reactive power to be supplied by the micro source which is connected to the compensator. Depending on the power requirement of the nonlinear load, the proposed control scheme can change modes of operation without any external communication interfaces. The compensator can operate in two modes depending on the entire power demand of the unbalanced nonlinear load. The proposed control scheme can even compensate system unbalance caused by the single-phase micro sources and load changes. The efficacy of the proposed power quality improvement control and method in such a microgrid is validated through extensive simulation studies using PSCAD/EMTDC software with detailed dynamic models of the micro sources and power electronic converters
Resumo:
Multilevel inverters provide an attractive solution for power electronics when both reduced harmonic contents and high voltages are required. In this paper, a novel predictive current control technique is proposed for a three-phase multilevel inverter, which controls the capacitors voltages and load currents with low switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase three-level inverter with a pure inductive load has been implemented to track reference currents using analogue circuits and programmable logic device.
Resumo:
This paper presents a new DC-DC Multi-Output Boost (MOB) converter which can share its total output between different series of output voltages for low and high power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady state and dynamic analysis of a MOB converter are examined. A simple control strategy has been proposed to demonstrate the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter.
Resumo:
This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.
Resumo:
This paper investigates the problem of appropriate load sharing in an autonomous microgrid. High gain angle droop control ensures proper load sharing, especially under weak system conditions. However it has a negative impact on overall stability. Frequency domain modeling, eigenvalue analysis and time domain simulations are used to demonstrate this conflict. A supplementary loop is proposed around a conventional droop control of each DG converter to stabilize the system while using high angle droop gains. Control loops are based on local power measurement and modulation of the d-axis voltage reference of each converter. Coordinated design of supplementary control loops for each DG is formulated as a parameter optimization problem and solved using an evolutionary technique. The sup-plementary droop control loop is shown to stabilize the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.
Resumo:
Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.
Resumo:
Noise and vibration in complex ship structures are becoming a prominent issue for ship building industry and ship companies due to the constant demand of building faster ships of lighter weight, and the stringent noise and libration regulation of the industry. In order to retain the full benefit of building faster ships without compromising too much on ride comfort and safety, noise and vibration control needs to be implemented. Due to the complexity of ship structures, the coupling of different wave types and multiple wave propagation paths, active control of global hull modes is difficult to implement and very expensive. Traditional passive control such as adding damping materials is only effective in the high frequency range. However, most severe damage to ship structures is caused by large structural deformation of hull structures and high dynamic stress concentration at low frequencies. The most discomfort and fatigue of passengers and the crew onboard ships is also due to the low frequency noise and vibration. Innovative approaches are therefore, required to attenuate the noise and vibration at low frequencies. This book was developed from several specialized research topics on vibration and vibration control of ship structures, mostly from the author's own PhD work at the University of Western Australia. The book aims to provide a better understanding of vibration characteristics of ribbed plate structures, plate/plate coupled structures and the mechanism governing wave propagation and attenuation in periodic and irregular ribbed structures as well as in complex ship structures. The book is designed to be a reference book for ship builders, vibro-acoustic engineers and researchers. The author also hopes that the book can stimulate more exciting future work in this area of research. It is the author's humble desire that the book can be some use for those who purchase it. This book is divided into eight chapters. Each chapter focuses on providing solution to address a particular issue on vibration problems of ship structures. A brief summary of each chapter is given in the general introduction. All chapters are inter-dependent to each other to form an integration volume on the subject of vibration and vibration control of ship structures and alike. I am in debt to many people in completing this work. In particular, I would like to thank Professor J. Pan, Dr N.H. Farag, Dr K. Sum and many others from the University of Western Australia for useful advices and helps during my times at the University and beyond. I would also like to thank my wife, Miaoling Wang, my children, Anita, Sophia and Angela Lin, for their sacrifice and continuing supports to make this work possible. Financial supports from Australian Research Council, Australian Defense Science and Technology Organization and Strategic Marine Pty Ltd at Western Australia for this work is gratefully acknowledged.
Resumo:
The current study sought to understand adolescent protective behavior in friendship using a Theory of Planned Behavior framework. In particular, the study sought to consider a young persons’ direct and active intervention to inhibit their friends’ risky behavior or to assist them when the behavior leads to injury. The role of attitudes regarding the consequences, norms and control about protective behavior were examined both qualitatively through focus groups (n= 50) and quantitatively through surveys from a sample of 540 Year 9 students (13-14 years old). There was some support for the theory with attitudes regarding the consequences of the behavior and norms predicting intended protective behavior. A path analysis was conducted with a sub-sample of 140 students which showed that intentions to be protective and perceived control to undertake protective behavior directly predicted such behavior after a 3 month interval. Attitudes towards the consequences and norms only indirectly predicted protective behavior via intention. The findings provide important applied information for interventions designed to increase adolescent protective behavior in their friendships.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
A Positive Buck-Boost converter is a known DC-DC converter which may be controlled to act as Buck or Boost converter with same polarity of the input voltage. This converter has four switching states which include all the switching states of the above mentioned DC-DC converters. In addition there is one switching state which provides a degree of freedom for the positive Buck-Boost converter in comparison to the Buck, Boost, and inverting Buck-Boost converters. In other words the Positive Buck-Boost Converter shows a higher level of flexibility for its inductor current control compared to the other DC-DC converters. In this paper this extra degree of freedom is utilised to increase the robustness against input voltage fluctuations and load changes. To address this capacity of the positive Buck-Boost converter, two different control strategies are proposed which control the inductor current and output voltage against any fluctuations in input voltage and load changes. Mathematical analysis for dynamic and steady state conditions are presented in this paper and simulation results verify the proposed method.
Resumo:
Intimate partner abuse and control is one of the most common forms of violence against women, and is considered an international problem of social, political, legal and human rights significance. Yet few studies have attempted to understand this problem from the perspective of male perpetrators. This gap is addressed by conducting in-depth interviews with 16 able-bodied men of white European ancestry born and educated in New Zealand or Australia, who have been physically violent and/or emotionally, intellectually, sexually or financially controlling of a live-in female partner. This thesis extends and deepens the dominant ways of thinking about men’s intimate partner abuse by utilising a new theoretical framework compatible with contemporary feminist scholarship. A synthesis of Connell’s theory of masculinities and Bourdieu’s field theory is utilised for the purpose of exploring more nuanced, complex understandings of manliness and men’s relationships with men, women and social structures. Through such an analysis, this thesis finds that men’s perpetration of power and control over women is driven by a need to avoid the stigma of appearing weak. As a consequence, their desire and ability to show love, care and empathy is suppressed in favour of a presumed honourable manliness, and their female partners are used as weapons in the pursuit of symbolic capital in the form of recognition, prestige and acceptance from real and/or imagined men. This research also uncovers the complex interplay between masculine practices and particular social contexts. For example, the norms of practice encountered from those in authority, such as teachers, sports coaches, police, court judges and workplace management, influences the decision making of the men in this study, to use, or not to use, physical violence, psychological abuse and structural control. The principal conclusion is that there is a repertoire of paradoxical masculinities and contradictory social messages available to the men in this study. But gender policing by other men, complicit women and those in authority provides little room for legitimate complexity in masculine practices. Perpetrators in this study reconcile these conflicts of interest by generally avoiding subordinated masculinity and possible ostracism, and instead practicing more heroic hegemonic masculinities by abusing and controlling women and particular other men. This thesis concludes that for intimate partner abuse and control to cease, changes in power structures have to occur at all levels of society.
Resumo:
Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.