269 resultados para scene invariant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the historical and contextual background of road construction by state and local government in Queensland. It also highlights some key events that have shaped stakeholder participation in road infrastructure planning and delivery in Queensland. This synthesis was developed from a review of publications, organisational documents and interviews. To set the scene, the factors that shaped road delivery will be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of either footprints or footwear impressions which have been recovered from a crime scene is a well known and well accepted part of forensic investigation. When this evidence is obtained by investigating officers, comparative analysis to a suspect’s evidence may be undertaken. This can be done either by the detectives or in some cases, podiatrists with experience in forensic analysis. Frequently asked questions of a podiatrist include; “What additional information should be collected from a suspect (for the purposes of comparison), and how should it be collected?” This paper explores the answers to these and related questions based on 20 years of practical experience in the field of crime scene analysis as it relates to podiatry and forensics. Elements of normal and abnormal foot function are explored and used to explain the high degree of variability in wear patterns produced by the interaction of the foot and footwear. Based on this understanding the potential for identifying unique features of the user and correlating this to footwear evidence becomes apparent. Standard protocols adopted by podiatrists allow for more precise, reliable, and valid results to be obtained from their analysis. Complex data sets are now being obtained by investigating officers and, in collaboration with the podiatrist; higher quality conclusions are being achieved. This presentation details the results of investigations which have used standard protocols to collect and analyse footwear and suspects of recent major crimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F, Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their proof is a d = VC(F) bound on the graph density of a subgraph of the hypercube—oneinclusion graph. The first main result of this paper is a density bound of n [n−1 <=d-1]/[n <=d] < d, which positively resolves a conjecture of Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main result is an algebraic topological property of maximum classes of VC-dimension d as being d contractible simplicial complexes, extending the well-known characterization that d = 1 maximum classes are trees. We negatively resolve a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for Peeling—that every class has one-inclusion minimum degree at most its VCdimension. Our final main result is a k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected risk bounds by a factor of O(logn) and is shown to be optimal up to an O(logk) factor. The combinatorial technique of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F, Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their proof is a d=VC(F) bound on the graph density of a subgraph of the hypercube—one-inclusion graph. The first main result of this report is a density bound of n∙choose(n-1,≤d-1)/choose(n,≤d) < d, which positively resolves a conjecture of Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main result is an algebraic topological property of maximum classes of VC-dimension d as being d-contractible simplicial complexes, extending the well-known characterization that d=1 maximum classes are trees. We negatively resolve a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for Peeling—that every class has one-inclusion minimum degree at most its VC-dimension. Our final main result is a k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected risk bounds by a factor of O(log n) and is shown to be optimal up to a O(log k) factor. The combinatorial technique of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we describe a body of work aimed at extending the reach of mobile navigation and mapping. We describe how running topological and metric mapping and pose estimation processes concurrently, using vision and laser ranging, has produced a full six-degree-of-freedom outdoor navigation system. It is capable of producing intricate three-dimensional maps over many kilometers and in real time. We consider issues concerning the intrinsic quality of the built maps and describe our progress towards adding semantic labels to maps via scene de-construction and labeling. We show how our choices of representation, inference methods and use of both topological and metric techniques naturally allow us to fuse maps built from multiple sessions with no need for manual frame alignment or data association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach to pattern recognition using invariant parameters based on higher-order spectra is presented. In particular, bispectral invariants are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale- and amplification-invariant. A minimal set of these invariants is selected as the feature vector for pattern classification. Pattern recognition using higher-order spectral invariants is fast, suited for parallel implementation, and works for signals corrupted by Gaussian noise. The classification technique is shown to distinguish two similar but different bolts given their one-dimensional profiles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An application of image processing techniques to recognition of hand-drawn circuit diagrams is presented. The scanned image of a diagram is pre-processed to remove noise and converted to bilevel. Morphological operations are applied to obtain a clean, connected representation using thinned lines. The diagram comprises of nodes, connections and components. Nodes and components are segmented using appropriate thresholds on a spatially varying object pixel density. Connection paths are traced using a pixel-stack. Nodes are classified using syntactic analysis. Components are classified using a combination of invariant moments, scalar pixel-distribution features, and vector relationships between straight lines in polygonal representations. A node recognition accuracy of 82% and a component recognition accuracy of 86% was achieved on a database comprising 107 nodes and 449 components. This recogniser can be used for layout “beautification” or to generate input code for circuit analysis and simulation packages

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over less than a decade, we have witnessed a seismic shift in the way knowledge is produced and exchanged. This is opening up new opportunities for civic and community engagement, entrepreneurial behaviour, sustainability initiatives and creative practices. It also has the potential to create fresh challenges in areas of privacy, cyber-security and misuse of data and personal information. The field of urban informatics focuses on the use and impacts of digital media technology in urban environments. Urban informatics is a dynamic and cross-disciplinary area of inquiry that encapsulates social media, ubiquitous computing, mobile applications and location-based services. Its insights suggest the emergence of a new economic force with the potential for driving innovation, wealth and prosperity through technological advances, digital media and online networks that affect patterns of both social and economic development. Urban informatics explores the intersections between people, place and technology, and their implications for creativity, innovation and engagement. This paper examines how the key learnings from this field can be used to position creative and cultural institutions such as galleries, libraries, archives and museums (GLAM) to take advantage of the opportunities presented by these changing social and technological developments. This paper introduces the underlying principles, concepts and research areas of urban informatics, against the backdrop of modern knowledge economies. Both theoretical ideas and empirical examples are covered in this paper. The first part discusses three challenges: a. People, and the challenge of creativity: The paper explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. b. Technology, and the challenge of innovation: The paper examines how urban informatics can be applied to support user-led innovation with a view to promoting entrepreneurial ideas and creative industries. c. Place, and the challenge of engagement: The paper discusses the potential to establish place-based applications of urban informatics, using the example of library spaces designed to deliver community and civic engagement strategies. The discussion of these challenges is illustrated by a review of projects as examples drawn from diverse fields such as urban computing, locative media, community activism, and sustainability initiatives. The second part of the paper introduces an empirically grounded case study that responds to these three challenges: The Edge, the Queensland Government’s Digital Culture Centre which is an initiative of the State Library of Queensland to explore the nexus of technology and culture in an urban environment. The paper not only explores the new role of libraries in the knowledge economy, but also how the application of urban informatics in prototype engagement spaces such as The Edge can provide transferable insights that can inform the design and development of responsive and inclusive new library spaces elsewhere. To set the scene and background, the paper begins by drawing the bigger picture and outlining some key characteristics of the knowledge economy and the role that the creative and cultural industries play in it, grasping new opportunities that can contribute to the prosperity of Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This presentation relates to a paper presenting an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling events in densely crowded environments remains challenging, due to the diversity of events and the noise in the scene. We propose a novel approach for anomalous event detection in crowded scenes using dynamic textures described by the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) descriptor. The scene is divided into spatio-temporal patches where LBP-TOP based dynamic textures are extracted. We apply hierarchical Bayesian models to detect the patches containing unusual events. Our method is an unsupervised approach, and it does not rely on object tracking or background subtraction. We show that our approach outperforms existing state of the art algorithms for anomalous event detection in UCSD dataset.