233 resultados para plant eco-physiology
Resumo:
In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the b-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein.
Resumo:
The buzzwords of zero-carbon, low-carbon, carbon-neutral, smart-eco and ubiquitous-eco have become common brands for the sustainable eco-cities of the 21st century. This paper focuses on one of these city types ‘ubiquitous-eco-city’ (u-eco-city). The principal premise of a u-eco-city is to provide a high quality of life and place to residents, workers and visitors with low-to-no negative impacts on the natural environment by using state-of-the-art technologies in the planning, development and management stages. The paper aims to put this premise into a test and address whether u-eco-city is a dazzling smart and sustainable urban form that constitutes an ideal 21st century city model or just a branding hoax. This paper explores recent developments and trends in the ubiquitous technologies, infrastructures, services and management systems, and their utilisation and implications for the development of u-eco-cities. The paper places Korean u-eco-city initiatives under microscope, and critically discusses their prospects in forming a smart and sustainable urban form and become an ideal city model.
Resumo:
Structurally novel compounds able to block voltage-gated Ca2+ channels (VGCCs) are currently being sought for the development of new drugs directed at neurological disorders. Fluorescence techniques have recently been developed to facilitate the analysis of VGCC blockers in a multi-well format. By utilising the small cell lung carcinoma cell line, NCI-H146, we were able to detect changes in intracellular Ca2+ concentration ([Ca2+]i) using a fluorescence microplate reader. NCI-H146 cells have characteristics resembling those of neuronal cells and express multiple VGCC subtypes, including those of the L-, N- and P-type. We found that K+-depolarisation of fluo-3 loaded NCI-H146 cells causes a rapid and transient increase in fluorescence, which was readily detected in a 96-well plate. Extracts of Australian plants, including those used traditionally as headache or pain treatments, were tested in this study to identify those affecting Ca2+ influx following membrane depolarisation of NCI-H146 cells. We found that E. bignoniiflora, A. symphyocarpa and E. vespertilio caused dose-dependent inhibition of K+-depolarised Ca2+ influx, with IC50 values calculated to be 234, 548 and 209 μg/ml, respectively. This data suggests an effect of these extracts on the function of VGCCs in these cells. Furthermore, we found similar effects using a fluorescence laser imaging plate reader (FLIPR) that allows simultaneous measurement of real-time fluorescence in a multi-well plate. Our results indicate that the dichloromethane extract of E. bignoniiflora and the methanolic extract of E. vespertilio show considerable promise as antagonists of neuronal VGCCs. Further analysis is required to characterise the function of the bioactive constituents in these extracts and determine their selectivity on VGCC subtypes.
Resumo:
A high performance liquid chromatographic method for the simultaneous determination of five organochlorine pesticides (aldrin, p,p’-DDT, dieldrin, endrin, and heptachlor) was developed. The method was used to determine the levels of these pesticides in medicinal plant samples. Analysis was carried out using a Merck LiChrospher 100 RP C18 (5 μm) column with a gradient solvent system of acetonitrile-water and PDA UV detection (224 nm). Quantification was carried out by the external standard method. The limit of detection for the utilized method was below the local legal limits (ANZFA) for similar plant materials for all 5 pesticides excepting endrin. Medicinal plant extracts were further analyzed by conventional GC-ECD and GC-NPD means using SPE and GPC cleanup as required.
Resumo:
Following eco-driving instructions can reduce fuel consumption between 5 to 20% on urban roads with manual cars. The majority of Australian cars have an automatic transmission gear-box. It is therefore of interest to verify whether current eco-driving instructions are e cient for such vehicles. In this pilot study, participants (N=13) drove an instrumented vehicle (Toyota Camry 2007) with an automatic transmission. Fuel consumption of the participants was compared before and after they received simple eco-driving instructions. Participants drove the same vehicle on the same urban route under similar tra c conditions. We found that participants drove at similar speeds during their baseline and eco-friendly drives, and reduced the level of their accelerations and decelerations during eco-driving. Fuel consumption decreased for the complete drive by 7%, but not on the motorway and inclined sections of the study. Gas emissions were estimated with the VT-micro model, and emissions of the studied pollutants (CO2, CO, NOX and HC) were reduced, but no di erence was observed for CO2 on the motorway and inclined sections. The di erence for the complete lap is 3% for CO2. We have found evidence showing that simple eco-driving instructions are e cient in the case of automatic transmission in an urban environment, but towards the lowest values of the spectrum of fuel consumption reduction from the di erent eco-driving studies.
Resumo:
Bangkok Metropolitan Region (BMR) is the centre for various major activities in Thailand including political, industry, agriculture, and commerce. Consequently, the BMR is the highest and most densely populated area in Thailand. Thus, the demand for houses in the BMR is also the largest, especially in subdivision developments. For these reasons, the subdivision development in the BMR has increased substantially in the past 20 years and generated large numbers of subdivision developments (AREA, 2009; Kridakorn Na Ayutthaya & Tochaiwat, 2010). However, this dramatic growth of subdivision development has caused several problems including unsustainable development, especially for subdivision neighbourhoods, in the BMR. There have been rating tools that encourage the sustainability of neighbourhood design in subdivision development, but they still have practical problems. Such rating tools do not cover the scale of the development entirely; and they concentrate more on the social and environmental conservation aspects, which have not been totally accepted by the developers (Boonprakub, 2011; Tongcumpou & Harvey, 1994). These factors strongly confirm the need for an appropriate rating tool for sustainable subdivision neighbourhood design in the BMR. To improve level of acceptance from all stakeholders in subdivision developments industry, the new rating tool should be developed based on an approach that unites the social, environmental, and economic approaches, such as eco-efficiency principle. Eco-efficiency is the sustainability indicator introduced by the World Business Council for Sustainable Development (WBCSD) since 1992. The eco-efficiency is defined as the ratio of the product or service value according to its environmental impact (Lehni & Pepper, 2000; Sorvari et al., 2009). Eco-efficiency indicator is concerned to the business, while simultaneously, is concerned with to social and the environment impact. This study aims to develop a new rating tool named "Rating for sustainable subdivision neighbourhood design (RSSND)". The RSSND methodology is developed by a combination of literature reviews, field surveys, the eco-efficiency model development, trial-and-error technique, and the tool validation process. All required data has been collected by the field surveys from July to November 2010. The ecoefficiency model is a combination of three different mathematical models; the neighbourhood property price (NPP) model, the neighbourhood development cost (NDC) model, and the neighbourhood occupancy cost (NOC) model which are attributable to the neighbourhood subdivision design. The NPP model is formulated by hedonic price model approach, while the NDC model and NOC model are formulated by the multiple regression analysis approach. The trial-and-error technique is adopted for simplifying the complex mathematic eco-efficiency model to a user-friendly rating tool format. Credibility of the RSSND has been validated by using both rated and non-rated of eight subdivisions. It is expected to meet the requirements of all stakeholders which support the social activities of the residents, maintain the environmental condition of the development and surrounding areas, and meet the economic requirements of the developers.
Resumo:
A group of passionate and naïve young people leave their known worlds behind to spend 100 days in the jungles of Borneo. Their mission is to confront one of the great global challenges of our time, saving rainforests and giving hope to endangered orangutans. Their task is enormous and the odds are against them. Jojo, an orphaned baby orangutan, is entrusted in their care and they must find a way to return her to her forest home. To do this, they need to build an orangutan rehabilitation centre and find ways to help the local communities protect their forest. Under the guidance of their mentor Dr Willie Smits, they introduce an innovative satellite monitoring system called Earthwatchers and enlist the help of school students around the world. The system is put to the test when the bulldozers move in and threaten the future of a nearby community living in a traditional longhouse. This is a story about what it takes it be an eco-warrior, an individual willing to step up and take action to avert a global catastrophe taking place before our eyes. The eco-warriors represent a new generation, ready to face what is happening on our planet and willing to do something, no matter how small, to build a more humane and balanced world. For them, every individual matters, every action counts. - Written by Cathy Henkel
Resumo:
Custom designed for display on the Cube Installation situated in the new Science and Engineering Centre (SEC) at QUT, the ECOS project is a playful interface that uses real-time weather data to simulate how a five-star energy building operates in climates all over the world. In collaboration with the SEC building managers, the ECOS Project incorporates energy consumption and generation data of the building into an interactive simulation, which is both engaging to users and highly informative, and which invites play and reflection on the roles of green buildings. ECOS focuses on the principle that humans can have both a positive and negative impact on ecosystems with both local and global consequence. The ECOS project draws on the practice of Eco-Visualisation, a term used to encapsulate the important merging of environmental data visualization with the philosophy of sustainability. Holmes (2007) uses the term Eco-Visualisation (EV) to refer to data visualisations that ‘display the real time consumption statistics of key environmental resources for the goal of promoting ecological literacy’. EVs are commonly artifacts of interaction design, information design, interface design and industrial design, but are informed by various intellectual disciplines that have shared interests in sustainability. As a result of surveying a number of projects, Pierce, Odom and Blevis (2008) outline strategies for designing and evaluating effective EVs, including ‘connecting behavior to material impacts of consumption, encouraging playful engagement and exploration with energy, raising public awareness and facilitating discussion, and stimulating critical reflection.’ Consequently, Froehlich (2010) and his colleagues also use the term ‘Eco-feedback technology’ to describe the same field. ‘Green IT’ is another variation which Tomlinson (2010) describes as a ‘field at the juncture of two trends… the growing concern over environmental issues’ and ‘the use of digital tools and techniques for manipulating information.’ The ECOS Project team is guided by these principles, but more importantly, propose an example for how these principles may be achieved. The ECOS Project presents a simplified interface to the very complex domain of thermodynamic and climate modeling. From a mathematical perspective, the simulation can be divided into two models, which interact and compete for balance – the comfort of ECOS’ virtual denizens and the ecological and environmental health of the virtual world. The comfort model is based on the study of psychometrics, and specifically those relating to human comfort. This provides baseline micro-climatic values for what constitutes a comfortable working environment within the QUT SEC buildings. The difference between the ambient outside temperature (as determined by polling the Google Weather API for live weather data) and the internal thermostat of the building (as set by the user) allows us to estimate the energy required to either heat or cool the building. Once the energy requirements can be ascertained, this is then balanced with the ability of the building to produce enough power from green energy sources (solar, wind and gas) to cover its energy requirements. Calculating the relative amount of energy produced by wind and solar can be done by, in the case of solar for example, considering the size of panel and the amount of solar radiation it is receiving at any given time, which in turn can be estimated based on the temperature and conditions returned by the live weather API. Some of these variables can be altered by the user, allowing them to attempt to optimize the health of the building. The variables that can be changed are the budget allocated to green energy sources such as the Solar Panels, Wind Generator and the Air conditioning to control the internal building temperature. These variables influence the energy input and output variables, modeled on the real energy usage statistics drawn from the SEC data provided by the building managers.
Resumo:
This research investigated the effectiveness of using an eco-driving strategy at urban signalised intersections from both the individual driver and the traffic flow perspective. The project included a field driving experiment and a series of traffic simulation investigations. The study found that the prevailing eco-driving strategy has negative impacts on traffic mobility and environmental performance when the traffic is highly congested. An improved eco-driving strategy has been developed to mitigate these negative impacts.
Resumo:
RNA silencing has become a major focus of molecular biology and biomedical research around the world. This is highlighted by a simple PubMed search for “RNA silencing,” which retrieves almost 9,000 articles. Interest in gene silencing-related mechanisms stemmed from the early 1990s, when this phenomenon was first noted as a surprise observation by plant scientists during the course of plant transformation experiments, in which the introduction of a transgene into the genome led to the silencing of both the transgene and homologous endogenes. From these initial studies, plant biologists have continued to generate a wealth of information into not only gene silencing mechanisms but also the complexity of these biological pathways as well as revealing their multilevel interactions with one another. The plant biology community has also made significant advancements in exploiting RNA silencing as a powerful tool for gene function studies and crop improvements. In this article, we (1) review the rich history of gene silencing research and the knowledge it has generated into our understanding of this fundamental mechanism of gene regulation in plants; (2) describe examples of the current applications of RNA silencing in crop plants; and (3) discuss improvements in RNA silencing technology and its potential application in plant science.
Resumo:
Post-transcriptional control of gene expression has gone from a curiosity involving a few special genes to a highly diverse and widespread set of processes that is truly pervasive in plant gene expression. Thus, Plant Cell readers interested in almost any aspect of plant gene expression in response to any environmental influence, or in development, are advised to read on. In May 2001, what has become the de facto third biennial Symposium on Post-Transcriptional Control of Gene Expression in Plants was held in Ames, Iowa. The meeting was hosted by the new Plant Sciences Institute of Iowa State University with additional funding from the National Science Foundation and the United States Department of Agriculture. In 1997, the annual University of California-Riverside Plant Physiology Symposium was devoted to this topic. This provided a wake-up call to the plant world, summarized in this journal (Gallie and Bailey-Serres, 1997), that not all gene expression is controlled at the level of transcription. This was expanded upon at a European Molecular Biology Organization Workshop in Leysin, Switzerland, in 1999 (Bailey-Serres et al., 1999). The 3-day meeting in Ames brought together a strong and diverse contingent of plant biologists from four continents. The participants represented an unusually heterogeneous group of disciplines ranging from virology to stress response to computational biology. The research approaches and techniques represented were similarly diverse. Here we discuss a sample of the many fascinating aspects of post-transcriptional control that were presented at this meeting; we apologize to those whose work is not described here.
Resumo:
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Resumo:
An important role of RNA interference (RNAi)-like pathways in plants is defense against viral infection. Viruses can overcome this defense by expressing proteins that suppress the pathway. A new study of Agrobacterium tumefaciens infection reveals that this plant pathogen, although a bacterium, also induces and then suppresses the host RNAi response. © 2006 Nature Publishing Group.
Resumo:
The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.