146 resultados para mathematics for hearing-impaired students
Resumo:
STIMulate is a support for learning program at the Queensland University of Technology in Brisbane, Australia. The program provides assistance in mathematics, science and information technology for undergraduate students. This paper develops personas - archetypal users - that represent the attitudes and motivations of students that utilise STIMulate (in particular, the IT stream). Seven different personas were developed based on interviews gathered from Peer Learning Facilitators (PLF) who are experienced students that have excelled in relevant subject areas. The personas were then validated by a PLF focus group. Developing the personas enabled us to better understand the characteristics and needs of the students using the STIMulate program, enabling a more critical analysis of the quality of the service provided.
Resumo:
Robotics@QUT is a university outreach program aimed at building pre- and in-service teacher capacity to encourage interest in Science, Technology, Engineering and Mathematics (STEM) subjects with school children from low socio-economic status areas. Currently over 35 schools are involved in the outreach program. Professional Development workshops are provided to teachers to build their knowledge in implementing robotics-based STEM activities in their classrooms, robotics loan kits are provided, and pre-service teacher visits arranged to provide the teachers with on-going support. The program also provides opportunities for school students to engage in robotics-based on-campus activities and competitions and is seen as a way to build aspirations for university. This paper presents an interim evaluation that examines the value of the Robotics@QUT program for the teachers, pre-service teachers and school students participating in the program. Surveys were administered to determine the participants’ perceived benefits of being involved and their perceptions of the program. The data gathered from the teachers showed that they had gained knowledge and confidence and felt that the Robotics@QUT program had assisted them to deliver engaging robotics-based STEM activities in their classrooms. The pre-service teachers’ responses focused on benefits for themselves, for their future teaching careers and for the school students involved. The school students’ responses focused on their increased knowledge and confidence to pursue future STEM studies and careers.
Resumo:
Description of Workshop/Poster Presentation This presentation will showcase CORE Connections – ‘Creating Opportunities for Resilience and Engagement’ – which is a whole-school approach to mental health promotion. While initially designed to prevent adolescent depression and substance abuse, current thinking suggests that competency enhancement (e.g., autonomy, competence, supportive networks) more widely improves students’ well-being, educational engagement, and learning outcomes. In the presentation, we will provide an overview of the CORE project, describe the CORE intervention, which is conceptualized as a dynamic and penetrating process of social practices, present some preliminary findings from the pilot phase of CORE, and conclude our presentation with an interactive section with the participants. This project will highlight a wellness focus that addresses social engagement within whole school cultures. Purpose of the Presentation Student mental and physical well-being has gained increasing attention. Our presentation will introduce the CORE project, which has a potential to decrease student depression, anxiety, and substance use, and to increase student self-esteem and learning outcomes. In this vein, our presentation will raise the public awareness of the salient role of social connection in student well-being. Specifically, a group of presenters will discuss the impact of social connection on students’ anxiety, mathematics achievement, and perceived racial discrimination. • We will present participants with an alternative way to conceptualize and approach mental health promotion within a school context. In contrast to prescribed programs that are commonly used in today’s schools, CORE is a whole-school approach that is flexibly integrated into all aspects of the classroom and school environment. Our aim is to illustrate the intervention principles of CORE while highlighting examples of mental health outcomes/transformation. • Underutilized in mental health promotion research, social network analysis provides critical information in understanding relationships between social cohesion (e.g., a student’s connectedness to others) and mental health outcomes. This session will showcase how focusing on and strengthening social connections in and out of school can contribute to student well-being, achievement, and mental health. Educational Objectives By the end of the presentation, participants will • obtain a general overview of the CORE program, • understand how psychological health and school performance relate to student well-being, • and understand how social connections in and out of school can contribute to student well-being. Interactive / Participatory Component We will invite audience members to discuss inhibitors and contributors to student well-being and the best ways for schools to help students feel safe, connected, and valued. Presentation Key Points • Overview of the CORE project • Theorization of social connection • Some empirical studies emerging from CORE • Presenter-audience interaction Evidence of Relevance and Utility to Participants Potential participants are adults with significant relationships with students, either as family members, community neighbors, educators, scholars, service providers, or policy makers. Our presentation will inspire these significant adults to construct a welcoming society to help improve student well-being.
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.
Resumo:
This paper reports on the results of a project aimed at creating a research-informed, pedagogically reliable, technology-enhanced learning and teaching environment that would foster engagement with learning. A first-year mathematics for engineering unit offered at a large, metropolitan Australian university provides the context for this research. As part of the project, the unit was redesigned using a framework that employed flexible, modular, connected e-learning and teaching experiences. The researchers, interested in an ecological perspective on educational processes, grounded the redesign principles in probabilistic learning design (Kirschner et al., 2004). The effectiveness of the redesigned environment was assessed through the lens of the notion of affordance (Gibson, 1977,1979, Greeno, 1994, Good, 2007). A qualitative analysis of the questionnaire distributed to students at the end of the teaching period provided insight into factors impacting on the successful creation of an environment that encourages complex, multidimensional and multilayered interactions conducive to learning.
Resumo:
Research on problem solving in the mathematics curriculum has spanned many decades, yielding pendulum-like swings in recommendations on various issues. Ongoing debates concern the effectiveness of teaching general strategies and heuristics, the role of mathematical content (as the means versus the learning goal of problem solving), the role of context, and the proper emphasis on the social and affective dimensions of problem solving (e.g., Lesh & Zawojewski, 2007; Lester, 2013; Lester & Kehle, 2003; Schoenfeld, 1985, 2008; Silver, 1985). Various scholarly perspectives—including cognitive and behavioral science, neuroscience, the discipline of mathematics, educational philosophy, and sociocultural stances—have informed these debates, often generating divergent resolutions. Perhaps due to this uncertainty, educators’ efforts over the years to improve students’ mathematical problem-solving skills have had disappointing results. Qualitative and quantitative studies consistently reveal mathematics students’ struggles to solve problems more significant than routine exercises (OECD, 2014; Boaler, 2009)...
Resumo:
This paper describes the development and use of personas, a Human Computer Interaction (HCI) research methodology, within the STIMulate peer learning program, in order to better understand student behaviour patterns and motivations. STIMulate is a support for learning program at the Queensland University of Technology (QUT) in Brisbane, Australia. The program provides assistance in mathematics, science and information technology (IT) for course work students. A STIMulate space is provided for students to study and obtain one-on-one assistance from Peer Learning Facilitators (PLFs), who are experienced students that have excelled in relevant subject areas. This paper describes personas – archetypal users - that represent the motivations and behavioural patterns of students that utilise STIMulate (particularly the IT stream). The personas were developed based on interviews with PLFs, and subsequently validated by a PLF focus group. Seven different personas were developed. The personas enable us to better understand the characteristics of the students utilising the STIMulate program. The research provides a clearer picture of visiting student motivations and behavioural patterns. This has helped us identify gaps in the services provided, and be more aware of our assumptions about students. The personas have been deployed in PLF training programs, to help PLFs provide a better service to the students. The research findings suggest further study on the resonances between some students and PLFs, which we would like to better elicit.
Resumo:
Recent systematic reviews have emphasized the need for more research into the health and social impacts of adverse childhood experiences (ACEs) in the Asia-Pacific region. This cross-sectional study was conducted with 2099 young adult students in 8 medical universities throughout Vietnam. An anonymous, self-report questionnaire included the World Health Organization ACE-International Questionnaire and standardized measures of mental and physical health. Three quarters (76%) of the students reported at least one exposure to ACEs; 21% had 4 or more ACEs. The most commonly reported adversities were emotional abuse, physical abuse, and witnessing a household member being treated violently (42.3%, 39.9%, and 34.6%, respectively). Co-occurrence of ACEs had dose–response relationships with poor mental health, suicidal ideation, and low physical health–related quality of life. This first multisite study of ACEs among Vietnamese university students provided evidence that childhood adversity is common and is significantly linked with impaired health and well-being into the early adult years
Resumo:
Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10-week teaching experiment, mathematical meaning-making was enriched when primary students wrote Logo programs to create 3D virtual worlds. The analysis of results found deep learning in mathematics, as well as in technology and engineering areas. This prompted a rethinking about the nature of learning mathematics and a need to employ and examine a more holistic learning approach for the learning in science, technology, engineering, and mathematics (STEM) areas.
Resumo:
Research on the achievement of rural and remote students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of rural students in higher education. International studies such as the Programme of International Student Assessment (PISA), have reported lower levels of mathematical and scientific literacy in Australian students from rural and remote schools (Thomson et al, 2011). The SiMERR national survey of science, mathematics and ICT education in rural and regional Australia (Lyons et al, 2006) identified factors affecting student achievement in rural and remote schools. Many of the issues faced by rural and remote students in their schools are likely to have implications on their university enrolments in science, technology, engineering and mathematics (STEM) courses. For example, rural and remote students are less likely to attend university in general than their city counterparts and higher university attrition rates have been reported for remote students nationally. This paper examines the responses of a sample of rural/remote Australian first year STEM students at Australian universities to two questions. These related to their intentions to complete the course; and whether -and if so, why- they had ever considered withdrawing from their course. Results indicated that rural students who were still in their course by the end of first year were no more or less likely to consider withdrawing than were their peers from more populous centres. However, almost 20% of the rural cohort had considered withdrawing at some stage in their course, and their explanations provide insights into the reasoning of those who may not persist with their courses at university. These results, in the context of the greater attrition rate of remote students from university, point to the need to identify factors that positively impact on rural and remote students’ interest and achievement in science and mathematics. It also highlights a need for future research into the particular issues remote students may face in deciding whether or not to do science at the two key transition points of senior school and university/TAFE studies, and whether or not to persist in their tertiary studies. This paper is positioned at the intersection of two problems in Australian education. The first is a context of falling levels of participation in physical science and mathematics courses in Australian universities. The second is persistent inequitable access to, and retention in, tertiary education for students from rural and remote areas. Despite considerable research attention to both of these areas over recent years these problems have thus far proved to be intractable. This paper therefore aims to briefly review the relevant Australian literature pertaining to these issues; that is, declining STEM enrolments, and the underrepresentation and retention of rural/remote students in higher education. Given the related problems in these two overlapping domains, we then explore the views of first year rural students enrolled in courses, in relation to their intentions of withdrawing (or not) and the associated reasons for their views.
Resumo:
The SiMERR National Survey was one of the first priorities of the National Centre of Science, Information and Communication Technology and Mathematics Education for Rural and Regional Australia (SiMERR Australia), established at the University of New England in July 2004 through a federal government grant. With university based ‘hubs’ in each state and territory, SiMERR Australia aims to support rural and regional teachers, students and communities in improving educational outcomes in these subject areas. The purpose of the survey was to identify the key issues affecting these outcomes. The National Survey makes six substantial contributions to our understanding of issues in rural education. First, it focuses specifically on school science, ICT and mathematics education, rather than on education more generally. Second, it compares the different circumstances and needs of teachers across a nationally agreed geographical framework, and quantifies these differences. Third, it compares the circumstances and needs of teachers in schools with different proportions of Indigenous students. Fourth, it provides greater detail than previous studies on the specific needs of schools and teachers in these subject areas. Fifth, the analyses of teacher ‘needs’ have been controlled for the socio-economic background of school locations, resulting in findings that are more tightly associated with geographic location than with economic circumstances. Finally, most previous reports on rural education in Australia were based upon focus interviews, public submissions or secondary analyses of available data. In contrast, the National Survey has generated a sizable body of original quantitative and qualitative data.
Resumo:
We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.
Resumo:
This paper reports on findings from the Interests and Recruitment in Science study, which explored the experiences of first year students studying science, technology, engineering and mathematics (STEM) courses in Australian universities. First year STEM students who went to school in rural or regional areas were as engaged, aspirational and motivated as their more metropolitan counterparts. However, they were less likely to have studied physics or advance mathematics, and more likely to have enrolled in an Agricultural or Environmental Science degree. The relationships between these results and broader contextual issues such as employment and Higher Education budgetary and policy settings are discussed.
Resumo:
The Disability Standards for Education (2005) and the Australian Curriculum, Assessment and Reporting Authority relevant standards underscore the right of students with disability to access the curriculum on the same basis as students without disability. Students with disability are entitled to rigorous, relevant and engaging learning opportunities drawn from the Australian curriculum content. Taking this context into account, this paper provides a work-in-progress report on a two-year mathematics intervention project conducted in 12 special schools (Preparatory-Year 12) in Queensland, Australia. The project aims to build the capacity of teachers to teach mathematics to their students and to identify and make sense of the intervention program’s impact. It combines two approaches—appreciative inquiry and action research to monitor schools’ change processes. The interim findings demonstrated that teachers were concerned about their students’ underachievement in mathematics and that the multi-sensory forms of teaching advocated in the program increased student engagement and performance.