131 resultados para hofstede


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of the more distributed nature of organisations and the inherently increasing complexity of their business processes, a significant effort is required for the specification and verification of those processes. The composition of the activities into a business process that accomplishes a specific organisational goal has primarily been a manual task. Automated planning is a branch of artificial intelligence (AI) in which activities are selected and organised by anticipating their expected outcomes with the aim of achieving some goal. As such, automated planning would seem to be a natural fit to the BPM domain to automate the specification of control flow. A number of attempts have been made to apply automated planning to the business process and service composition domain in different stages of the BPM lifecycle. However, a unified adoption of these techniques throughout the BPM lifecycle is missing. As such, we propose a new intention-centric BPM paradigm, which aims on minimising the specification effort by exploiting automated planning techniques to achieve a pre-stated goal. This paper provides a vision on the future possibilities of enhancing BPM using automated planning. A research agenda is presented, which provides an overview of the opportunities and challenges for the exploitation of automated planning in BPM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With organisations facing significant challenges to remain competitive, Business Process Improvement (BPI) initiatives are often conducted to improve the efficiency and effectiveness of their business processes, focussing on time, cost, and quality improvements. Event logs which contain a detailed record of business operations over a certain time period, recorded by an organisation's information systems, are the first step towards initiating evidence-based BPI activities. Given an (original) event log as a starting point, an approach to explore better ways to execute a business process was developed, resulting in an improved (perturbed) event log. Identifying the differences between the original event log and the perturbed event log can provide valuable insights, helping organisations to improve their processes. However, there is a lack of automated techniques to detect the differences between two event logs. Therefore, this research aims to develop visualisation techniques to provide targeted analysis of resource reallocation and activity rescheduling. The differences between two event logs are first identified. The changes between the two event logs are conceptualised and realised with a number of visualisations. With the proposed visualisations, analysts will then be able to identify the changes related to resource and time, resulting in a more efficient business process. Ultimately, analysts can make use of this comparative information to initiate evidence-based BPI activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Companies standardise and automate their business processes in order to improve process eff ciency and minimise operational risks. However, it is di fficult to eliminate all process risks during the process design stage due to the fact that processes often run in complex and changeable environments and rely on human resources. Timely identification of process risks is crucial in order to insure the achievement of process goals. Business processes are often supported by information systems that record information about their executions in event logs. In this article we present an approach and a supporting tool for the evaluation of the overall process risk and for the prediction of process outcomes based on the analysis of information recorded in event logs. It can help managers evaluate the overall risk exposure of their business processes, track the evolution of overall process risk, identify changes and predict process outcomes based on the current value of overall process risk. The approach was implemented and validated using synthetic event logs and through a case study with a real event log.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing process mining techniques provide summary views of the overall process performance over a period of time, allowing analysts to identify bottlenecks and associated performance issues. However, these tools are not de- signed to help analysts understand how bottlenecks form and dissolve over time nor how the formation and dissolution of bottlenecks – and associated fluctua- tions in demand and capacity – affect the overall process performance. This paper presents an approach to analyze the evolution of process performance via a notion of Staged Process Flow (SPF). An SPF abstracts a business process as a series of queues corresponding to stages. The paper defines a number of stage character- istics and visualizations that collectively allow process performance evolution to be analyzed from multiple perspectives. The approach has been implemented in the ProM process mining framework. The paper demonstrates the advantages of the SPF approach over state-of-the-art process performance mining tools using two real-life event logs publicly available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organisations are always focussed on ensuring that their business operations are performed in the most cost-effective manner, and that processes are responsive to ever-changing cost pressures. In many organisations, however, strategic cost-based decisions at the managerial level are not directly or quickly translatable to process-level operational support. A primary reason for this disconnect is the limited system-based support for cost-informed decisions at the process-operational level in real time. In this paper, we describe the different ways in which a workflow management system can support process-related decisions, guided by cost-informed considerations at the operational level, during execution. As a result, cost information is elevated from its non-functional attribute role to a first-class, fully functional process perspective. The paper defines success criteria that a WfMS should meet to provide such support, and discusses a reference implementation within the YAWL workflow environment that demonstrates how the various types of cost-informed decision rules are supported, using an illustrative example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing business process drift detection methods do not work with event streams. As such, they are designed to detect inter-trace drifts only, i.e. drifts that occur between complete process executions (traces), as recorded in event logs. However, process drift may also occur during the execution of a process, and may impact ongoing executions. Existing methods either do not detect such intra-trace drifts, or detect them with a long delay. Moreover, they do not perform well with unpredictable processes, i.e. processes whose logs exhibit a high number of distinct executions to the total number of executions. We address these two issues by proposing a fully automated and scalable method for online detection of process drift from event streams. We perform statistical tests over distributions of behavioral relations between events, as observed in two adjacent windows of adaptive size, sliding along with the stream. An extensive evaluation on synthetic and real-life logs shows that our method is fast and accurate in the detection of typical change patterns, and performs significantly better than the state of the art.