166 resultados para fault diagnosis,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection and correction of defects remains among the most time consuming and expensive aspects of software development. Extensive automated testing and code inspections may mitigate their effect, but some code fragments are necessarily more likely to be faulty than others, and automated identification of fault prone modules helps to focus testing and inspections, thus limiting wasted effort and potentially improving detection rates. However, software metrics data is often extremely noisy, with enormous imbalances in the size of the positive and negative classes. In this work, we present a new approach to predictive modelling of fault proneness in software modules, introducing a new feature representation to overcome some of these issues. This rank sum representation offers improved or at worst comparable performance to earlier approaches for standard data sets, and readily allows the user to choose an appropriate trade-off between precision and recall to optimise inspection effort to suit different testing environments. The method is evaluated using the NASA Metrics Data Program (MDP) data sets, and performance is compared with existing studies based on the Support Vector Machine (SVM) and Naïve Bayes (NB) Classifiers, and with our own comprehensive evaluation of these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Foetal Alcohol Syndrome has long gone unrecognised and undiagnosed in Australia. In the last few years of the 21st Century (2010-14) health practitioners are finally seeking ways of diagnosing the effects of alcohol in pregnancy on the next generation. The author offers a power point presentation which gives guidance on making an accurate diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Concentrations of troponin measured with high sensitivity troponin assays are raised in a number of emergency department (ED) patients; however many are not diagnosed with acute myocardial infarction (AMI). Clinical comparisons between the early use (2 h after presentation) of high sensitivity cardiac troponin T (hs-cTnT) and I (hs-cTnI) assays for the diagnosis of AMI have not been reported. Design and methods: Early (0 h and 2 h) hs-cTnT and hs-cTnI assay results in 1571 ED patients with potential acute coronary syndrome (ACS) without ST elevation on electrocardiograph (ECG) were evaluated. The primary outcome was diagnosis of index MI adjudicated by cardiologists using the local cTnI assay results taken ≥6 h after presentation, ECGs and clinical information. Stored samples were later analysed with hs-cTnT and hs-cTnI assays. Results: The ROC analysis for AMI (204 patients; 13.0%) for hs-cTnT and hs-cTnI after 2 h was 0.95 (95% CI: 0.94–0.97) and 0.98 (95% CI: 0.97–0.99) respectively. The sensitivity, specificity, PLR, and NLR of hs-cTnT and hs-cTnI for AMI after 2 h were 94.1% (95% CI: 90.0–96.6) and 95.6% (95% CI: 91.8–97.7), 79.0% (95% CI: 76.8–81.1) and 92.5% (95% CI: 90.9–93.7), 4.48 (95% CI: 4.02–5.00) and 12.86 (95% CI: 10.51–15.31), and 0.07 (95% CI: 0.04–0.13) and 0.05 (95% CI:0.03–0.09) respectively. Conclusions: Exclusion of AMI 2 h after presentation in emergency patients with possible ACS can be achieved using hs-cTnT or hs-cTnI assays. Significant differences in specificity of these assays are relevant and if using the hs-cTnT assay, further clinical assessment in a larger proportion of patients would be required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in genetic science will potentially have a significant impact on reproductive decision-making by adding to the list of conditions which can be diagnosed through prenatal diagnosis. This article analyses the jurisdictional variations that exist in Australian abortion laws and examines the extent to which Australian abortion laws specifically provide for termination of pregnancy on the grounds of fetal disability. The article also examines the potential impact of pre-implantation genetic diagnosis on reproductive decision-making and considers the meaning of reproductive autonomy in the context of the new genetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a conventional ac motor drive using field-oriented control, a dc-link voltage, speed, and at least two current sensors are required. Hence, in the event of sensor failure, the performance of the drive system can be severely compromised. This paper presents a sensor fault-tolerant control strategy for interior permanent-magnet synchronous motor (IPMSM) drives. Three independent observers are proposed to estimate the speed, dc-link voltage, and currents of the machine. If a sensor fault is detected, the drive system isolates the faulty sensor while retaining the remaining functional ones. The signal is then acquired from the corresponding observer in order to maintain the operation of the drive system. The experimental results provided verify the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Children with type 1 diabetes mellitus (DM1) may be at increased risk of psychosocial and adjustment difficulties. We examined behavioral outcomes six months post-diagnosis in a group of children with newly diagnosed DM1. Methods: This study formed part of a larger longitudinal project examining pathophysiology and neuropsychological outcomes in diabetic patients with or without diabetic ketoacidosis (DKA). Participants were 61 children (mean age 11.8 years, SD 2.7 years) who presented with a new diagnosis of DM1 at the Royal Children’s Hospital, Melbourne. Twenty-three (11 female) presented in DKA and 38 (14 female) without DKA. Parents completed the behavior assessment system for children, second edition six months post-diagnosis. Results: There was a non-linear relationship between age and behavior. Internalising problems (i.e. anxiety depression, withdrawal) peaked in the transition from childhood to adolescence; children aged 10–13 years had elevated rates relative to the normal population (t = 2.55, P = 0.018). There was a non-significant trend for children under 10 to display internalising problems (P = 0.052), but rates were not elevated in children over 13 (P = 0.538). Externalising problems were not significantly elevated in any age group. Interestingly, children who presented in DKA were at lower risk of internalising problems than children without DKA (t = 3.83, P < 0.001). There was no effect of DKA on externalising behaviors. Conclusions: Children transitioning from childhood to adolescence are at significant risk for developing internalising problems such as anxiety and lowered mood after diagnosis of DM1. Somewhat counter-intuitively, parents of children presenting in DKA reported fewer internalising symptoms than parents of children without DKA. These results highlight the importance of monitoring and supporting psychosocial adjustment in newly diagnosed children even when they seem physically well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saliva as a biological fluid is gaining wider acceptance for diagnosing diseases. The growing interest in saliva as a biological fluid is due to its noninvasiveness, ease of use, cost-effectiveness, and multiple sample collection possibilities as well as minimal risk to health care professionals of contracting infectious organisms such as HIV and Hep B. However, the clinical translation of saliva is hampered by our lack of understanding of the biomolecular transportation from blood into saliva, the diurnal variations of biomolecules present in saliva, and relatively low levels of analytes (100th to a 1000th fold less than in blood). We provide information on the current status of salivary research, salivary diagnostics empowered by nanotechnology, and future prospects in this emerging field of saliva diagnostics.