582 resultados para energy collisional activation
Resumo:
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
Effective strategies for the design of effi cient and environmentally sensitive buildings require a close collaboration between architects and engineers in the design of the building shell and environmental control systems at the outset of projects. However, it is often not practical for engineers to be involved early on in the design process. It is therefore essential that architects be able to perform preliminary energy analyses to evaluate their proposed designs prior to the major building characteristics becoming fi xed. Subsequently, a need exists for a simplifi ed energy design tool for architects. This paper discusses the limitations of existing analysis software in supporting early design explorations and proposes a framework for the development of a tool that provides decision support by permitting architects to quickly assess the performance of design alternatives.
Resumo:
Comparison is widely used in research projects and commercial products whose goal is to motivate energy saving at home. This research builds on fundamental theories from social psychology in an attempt to shed light on how to motivate consumers to conserve energy by providing relevant people for social comparison depending on consumer’s motivation to compare. To support the research process, the mobile application EnergyWiz was developed through a theory-driven design approach. Along with other features EnergyWiz provides users with three types of social comparison – normative, one-on-one and ranking. The results of interviews with prospective users are used to derive design suggestions for relevant people for comparison (comparison subjects).
Resumo:
Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.
Resumo:
The Wilms’ tumor suppressor protein WT1 is a transcriptional regulator involved in differentiation and the regulation of cell growth. WT1 is subject to alternative splicing, one isoform including a 17–amino acid region that is specific to mammals. The function of this 17–amino acid insertion is not clear, however. Here, we describe a transcriptional activation domain in WT1 that is specific to the WT1 splice isoform that contains the 17–amino acid insertion. We show that the function of this domain in transcriptional activation is dependent on a specific interaction with the prostate apoptosis response factor par4. A mutation in WT1 found in Wilms’ tumor disturbs the interaction with par4 and disrupts the function of the activation domain. Analysis of WT1 derivatives in cells treated to induce par4 expression showed a strong correlation between the transcription function of the WT1 17–amino acid insertion and the ability of WT1 to regulate cell survival and proliferation. Our results provide a molecular mechanism by which alternative splicing of WT1 can regulate cell growth in development and disease.
Resumo:
Background: The enthesis of the plantar fascia is thought to play an important role in stress dissipation. However, the potential link between entheseal thickening characteristic of enthesopathy and the stress-dissipating properties of the intervening plantar fat pad have not been investigated. Purpose: This study was conducted to identify whether plantar fat pad mechanics explain variance in the thickness of the fascial enthesis in individuals with and without plantar enthesopathy. Study Design: Case-control study; Level of evidence, 3. Methods: The study population consisted of 9 patients with unilateral plantar enthesopathy and 9 asymptomatic, individually matched controls. The thickness of the enthesis of the symptomatic, asymptomatic, and a matched control limb was acquired using high-resolution ultrasound. The compressive strain of the plantar fat pad during walking was estimated from dynamic lateral radiographs acquired with a multifunction fluoroscopy unit. Peak compressive stress was simultaneously acquired via a pressure platform. Principal viscoelastic parameters were estimated from subsequent stress-strain curves. Results: The symptomatic fascial enthesis (6.7 ± 2.0 mm) was significantly thicker than the asymptomatic enthesis (4.2 ± 0.4 mm), which in turn was thicker than the enthesis (3.3 ± 0.4 mm) of control limbs (P < .05). There was no significant difference in the mean thickness, peak stress, peak strain, or secant modulus of the plantar fat pad between limbs. However, the energy dissipated by the fat pad during loading and unloading was significantly lower in the symptomatic limb (0.55 ± 0.17) when compared with asymptomatic (0.69 ± 0.13) and control (0.70 ± 0.09) limbs (P < .05). The sonographic thickness of the enthesis was correlated with the energy dissipation ratio of the plantar fat pad (r = .72, P < .05), but only in the symptomatic limb. Conclusion: The energy-dissipating properties of the plantar fat pad are associated with the sonograpic appearance of the enthesis in symptomatic limbs, providing a previously unidentified link between the mechanical behavior of the plantar fat pad and enthesopathy.
Resumo:
The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the format of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This paper presents a study that seeks to provide initial indications for motivation-specific design of energy-related feedback. We focus on comparative feedback supported by a community of energy consumers. In particular, we examine eco-visualisations, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three allow us to explore the potential of socialising energy-related feedback. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was evaluated in personal, semi-structured interviews, which provided first insights on how to design motivation-related comparative feedback.
Resumo:
In the face of increasing concern over global warming and climate change, interest in the utilizzation of solar energy for building operations is rapidly growing. In this entry, the importance of using renewable energy in building operations is first introduced. This is followed by a general overview on the energy from the sun and the methods to utilize solar energy. Possible applications of solar energy in building operations are then discussed, which include the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling, and building-integrated photovoltaics.
Resumo:
Air quality and temperatures in classrooms are important factors influencing the student learning process. To improve the thermal comfort of classrooms for Queensland State Schools, Queensland Government initiated the "Cooler Schools Program". One of the key objectives under this program was to develop low energy cooling systems as an alternative to high energy demand conventioanl split system of air conditioning (AC) systems. In order to compare and evaluate the energy performance of different types of air conditioners installed in classrooms, monitoring systems were installed in a state primary school located in the greater outer urban area of Brisbane, Australia. It was found that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. By comparing the estimated energy efficiency ratio (EER)for four qualified air conditioners included in this study, it was also found that AC6, a hybrid air conditioner newly developed by the Queensland Department of Public Works (DPW), had the best energy performance, although the current data were not able to show the full advantages of the system.
Resumo:
Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.
Resumo:
Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show: Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load. There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures. The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases. The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.
Resumo:
This talk explores a new opportunity renewable energy technology has for society.
Resumo:
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary