178 resultados para applied physics
Resumo:
Plasma transport in a hybrid dc vacuum arc plasma source for ion deposition and plasma immersion treatment is considered. It is found that external crossed electric and magnetic fields near the substrate can significantly reduce the relative amplitude of ion current fluctuations I-f at the substrate surface. In particular, I-f decreases with the applied magnetic field when the bias voltage exceeds 300 V, thus allowing one to reduce the deviations from the rated process parameters. This phenomenon can be attributed to an interaction between the metal-plasma jet from the arc source and the discharge plasma in the crossed fields. © 2006 American Institute of Physics.
Resumo:
Three-dimensional topography of microscopic ion fluxes in the reactive hydrocarbon-based plasma-aided nanofabrication of ordered arrays of vertically aligned single-crystalline carbon nanotip microemitter structures is simulated by using a Monte Carlo technique. The individual ion trajectories are computed by integrating the ion equations of motion in the electrostatic field created by a biased nanostructured substrate. It is shown that the ion flux focusing onto carbon nanotips is more efficient under the conditions of low potential drop Us across the near-substrate plasma sheath. Under low- Us conditions, the ion current density onto the surface of individual nanotips is higher for higher-aspect-ratio nanotips and can exceed the mean ion current density onto the entire nanopattern in up to approximately five times. This effect becomes less pronounced with increasing the substrate bias, with the mean relative enhancement of the ion current density ξi not exceeding ∼1.7. The value of ξi is higher in denser plasmas and behaves differently with the electron temperature Te depending on the substrate bias. When the substrate bias is low, ξi decreases with Te, with the opposite tendency under higher- Us conditions. The results are relevant to the plasma-enhanced chemical-vapor deposition of ordered large-area nanopatterns of vertically aligned carbon nanotips, nanofibers, and nanopyramidal microemitter structures for flat-panel display applications. © 2005 American Institute of Physics.
Resumo:
The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.
Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN
Resumo:
Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications.
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
Charging of micron-size particulates, often appearing in fluorocarbon plasma etching experiments, is considered. It is shown that in inductively coupled and microwave slot-excited plasmas of C4F8 and Ar gas mixtures, the equilibrium particle charge and charge relaxation processes are controlled by a combination of microscopic electron, atomic (Ar+ and F+), and molecular ion (CF+ 3, CF+ 2, and CF+) currents. The impact of molecular ion currents on the particulate charging and charge relaxation processes is analyzed. It is revealed that in low-power (<0.5 kW) microwave slot-excited plasmas, the impact of the combined molecular ion current to the total positive microscopic current on the particle can be as high as 40%. The particulate charge relaxation rate in fluorocarbon plasmas appears to exceed 108 s-1, which is almost one order of magnitude higher than that from purely argon plasmas. This can be attributed to the impact of positive currents of fluorocarbon molecular ions, as well as to the electron density fluctuations with particle charge, associated with electron capture and release by the particulates.
Resumo:
Operation and mode jumps in low-frequency (500 kHz) radio-frequency inductively coupled plasmas are investigated. The discharge is driven by a flat inductive coil which can excite the electrostatic (E) and electromagnetic (H) discharge modes. The power transfer efficiency and mode transition behavior are studied. It is found that the power reflection coefficient as a function of the input power is minimal in the vicinity of the mode transitions and exhibits hysteresis, which is also observed when the operating gas pressure is varied.
Resumo:
Nonlinear effects associated with density modulation caused by wave-induced ionization in magnetized plasmas were studied. The ionizing surface waves propagate at the interface between the plasma and a metallic surface. It is shown that the ionization nonlinearity can be important for typical experimental conditions.
Resumo:
The effect of charged particulates or dusts on surface wave produced microwave discharges is studied. The frequencies of the standing electromagnetic eigenmodes of large-area flat plasmas are calculated. The dusts absorb a significant amount of the plasma electrons and can lead to a modification of the electromagnetic field structure in the discharge by shifting the originally excited operating mode out of resonance. For certain given proportions of dusts, mode conversion is found to be possible. The power loss in the discharge is also increased because of dust-specific dissipations, leading to a decrease of the operating mode quality factor.
Resumo:
Self-assembly of highly stoichiometric SiC quantum dots still remains a major challenge for the gas/plasma-based nanodot synthesis. By means of a multiscale hybrid numerical simulation of the initial stage (0.1-2.5 s into the process) of deposition of SiCSi (100) quantum dot nuclei, it is shown that equal Si and kst atom deposition fluxes result in strong nonstoichiometric nanodot composition due to very different surface fluxes of Si and C adatoms to the quantum dots. At this stage, the surface fluxes of Si and C adatoms to SiC nanodots can be effectively controlled by manipulating the SiC atom influx ratio and the Si (100) surface temperature. It is demonstrated that at a surface temperature of 800 K the surface fluxes can be equalized after only 0.05 s into the process; however, it takes more then 1 s at a surface temperature of 600 K. Based on the results of this study, effective strategies to maintain a stoichiometric ([Si] [C] =1:1) elemental ratio during the initial stages of deposition of SiCSi (100) quantum dot nuclei in a neutral/ionized gas-based process are proposed.
Resumo:
The role of the plasma-grown nanoparticles in the plasma-enhanced chemical vapor deposition (PECVD) of the nanostructured carbon-based films was investigated. The samples were grown in the low-pressure rf plasmas of CH 4+H2+Ar gas mixtures. The enhanced deposition of the building units from the gas phase was found to support the formation of polymorphous nanostructured carbon films. The results reveal the crucial role played by the thermophoretic force in controlling the deposition of the plasma-grown fine particles.
Resumo:
The possibility of deterministic plasma-assisted reshaping of capped cylindrical seed nanotips by manipulating the plasma parameter-dependent sheath width is shown. Multiscale hybrid gas phase/solid surface numerical experiments reveal that under the wide-sheath conditions the nanotips widen at the base and when the sheath is narrow, they sharpen up. By combining the wide- and narrow-sheath stages in a single process, it turns out possible to synthesize wide-base nanotips with long- and narrow-apex spikes, ideal for electron microemitter applications. This plasma-based approach is generic and can be applied to a larger number of multipurpose nanoassemblies. © 2005 American Institute of Physics.
Resumo:
The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.
Resumo:
A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.
Resumo:
The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.