168 resultados para Traumatic asphyxia
Resumo:
Reporting on death and accidents in regional and rural areas can exact a heavy toll on reporters. News reporters necessarily report on trauma. Overseas correspondents who report from war zones or areas of conflict or natural disaster are often exposed to physical risk and are sometimes required to confront extreme trauma. To an extent reporters embarking on overseas assignments are mentally prepared to face traumatic situations. Their supervisors are more or less aware of the reporter’s isolation and vulnerability...
Resumo:
Across the lifespan traumatic experiences are common with more people experiencing such events than not. Within the context of being a medical professional trauma may result from a direct experience (e.g., in a person’s personal life) but may also occur vicariously. For example, a medical professional may be traumatized during the course of their employ as they come to the aid of a trauma survivor. Although there can be long term negative sequale for trauma survivors (e.g., PTSD, depression), the majority of people who experience trauma, vicariously or otherwise, are resilient to long term effects and some people grow or develop beyond their pre-event level of functioning. Therefore, in addition to interest in antecedents and correlates of pathology, research examining the predictors and correlates of resilience and growth has gained notable attention. In this chapter the fundamental assumptions of the salutogenic theory are discussed. Salutogenisis refers to the study of the origins of health and to that end has a goal to determine factors involved in promoting and maintaining health. The chapter then goes on to describe posttraumatic growth, a term used to denote positive post-trauma changes as well as resilience including discussion of the similarities and differences between these two constructs. Ways of promoting growth and resilience in medical professionals are then identified. The chapter concludes with discussion of ways in which individuals can enhance their potential for growth and also of ways in which the organization they work for can best facilitate and promote resilience and growth in its employees.
Resumo:
Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.
Resumo:
The lower limb of military vehicle occupants has been the most injured body part due to undervehicle explosions in recent conflicts. Understanding the injury mechanism and causality of injury severity could aid in developing better protection. Therefore, we tested 4 different occupant postures (seated, brace, standing, standing with knee locked in hyper‐extension) in a simulated under‐vehicle explosion (solid blast) using our traumatic injury simulator in the laboratory; we hypothesised that occupant posture would affect injury severity. No skeletal injury was observed in the specimens in seated and braced postures. Severe, impairing injuries were observed in the foot of standing and hyper‐extended specimens. These results demonstrate that a vehicle occupant whose posture at the time of the attack incorporates knee flexion is more likely to be protected against severe skeletal injury to the lower leg.
Resumo:
Lower extremities are particularly susceptible to injury in an under‐vehicle explosion. Operational fitness of military vehicles is assessed through anthropometric test devices (ATDs) in full‐scale blast tests. The aim of this study was to compare the response between the Hybrid‐III ATD, the MiL‐Lx ATD and cadavers in our traumatic injury simulator, which is able to replicate the response of the vehicle floor in an under‐vehicle explosion. All specimens were fitted with a combat boot and tested on our traumatic injury simulator in a seated position. The load recorded in the ATDs was above the tolerance levels recommended by NATO in all tests; no injuries were observed in any of the 3 cadaveric specimens. The Hybrid‐III produced higher peak forces than the MiL‐Lx. The time to peak strain in the calcaneus of the cadavers was similar to the time to peak force in the ATDs. Maximum compression of the sole of the combat boot was similar for cadavers and MiL‐Lx, but significantly greater for the Hybrid‐III. These results suggest that the MiL‐Lx has a more biofidelic response to under‐vehicle explosive events compared to the Hybrid‐III. Therefore, it is recommended that mitigation strategies are assessed using the MiL‐Lx surrogate and not the Hybrid‐III.
Resumo:
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.
Resumo:
"Within contemporary society the meaning of 'health' is surprisingly unstable. Guiding principles that once seemed self-evident have been challenged by new social, scientific and economic forces. This book argues that the foundational terms and concepts, which form the basic building blocks of dialogue about health, are now in flux. While the forces in play differ, and the pace of change is varied, there is now a 'brave new world' of health which characterises policy debate about health (and illness or disability). This permeates even the more narrow technical issues within clinical medicine, the law and medical science. This construction and reconstruction of health has important implications for the development of law and policy. The book draws on international and local experts to explore these issues. It opens with consideration of the economic and social forces of 'globalisation' - the macro level forces which now shape the 'lived realities' of health for the world's people. This is then contextualised through a series of detailed 'case studies' of more localised examples including; pharmaceuticals, preimplantation genetic diagnosis, body modification, abortion, anorexia and post-traumatic stress disorder. The book also interrogates the way modern health research influences public conceptions of health. Across these issues the book canvasses the social forces at work in the construction of health, disability and illness in shaping our understandings of such concepts by the public, by individuals, by the courts, and by international bodies. Brave New World of Health is an important contribution to advancing that understanding."--Publisher's website.
Resumo:
Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
Inflammation of the spinal cord after traumatic spinal cord injury leads to destruction of healthy tissue. This “secondary degeneration” is more damaging than the initial physical damage and is the major contributor to permanent loss of functions. In our previous study we showed that combined delivery of two growth factors, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), significantly reduced secondary degeneration after hemi-section injury of the spinal cord in the rat. Growth factor treatment reduced the size of the lesion cavity at 30d compared to control animals and further reduced the cavity at 90d in treated animals while in control animals the lesion cavity continued to increase in size. Growth factor treatment also reduced astrogliosis and reduced macroglia/macrophage activation around the injury site. Treatment with individual growth factors alone had similar effects to control treatments. The present study investigated whether growth factor treatment would improve locomotor behaviour after spinal contusion injury, a more relevant preclinical model of spinal cord injury. The growth factors were delivered for the first 7d to the injury site via osmotic minipump. Locomotor behaviour was monitored at 1-28d after injury using the BBB score and at 30d using automated gait analysis. Treated animals had BBB scores of 18; Control animals scored 10. Treated animals had significantly reduced lesion cavities and reduced macroglia/macrophage activation around the injury site. We conclude that growth factor treatment preserved spinal cord tissues after contusion injury, thereby allowing functional recovery. This treatment has the potential to significantly reduce the severity of human spinal cord injuries.
Resumo:
This study explored the stress and wellbeing of Emergency Medical Dispatchers (EMD) who remotely provide crisis intervention to medical emergencies through telehealth support. Semi-structured interviews with 16 EMDs were conducted and Interpretative Phenomenological Analysis was used to identify themes in the data. These results indicated that despite their physical distance from the crisis scene, EMDs can experience vicarious trauma through acute and cumulative exposure to traumatic incidents and their perceived lack of control which can expound feelings of helplessness. Three superordinate themes of operational stress and trauma, organisational stress, and posttraumatic growth were identified. Practical implications are suggested to enable emergency services organisations to counteract this job related stress and promote more positive mental health outcomes.
Resumo:
Recent research has demonstrated that the same experiences that may elicit symptoms of post-traumatic stress disorder (PTSD) in emergency service personnel can also provide a catalyst for positive personal changes such as posttraumatic growth (PTG). In this research newly recruited police officers (N = 412) participated in a randomised control trial of a program specifically designed to promote mental health. On entry to the academy, new recruits were randomly allocated, by classrooms, to either a treatment as usual condition (i.e., existing psychoeducation program) or to the intervention group. The Promoting Resilient Officers (PRO) program is a resilience building intervention adapted from an earlier resilience building program in collaboration with the police service. The PRO program also includes additional components on trauma and PTG. The current research included the participants who had experienced trauma prior to or during the research period (N = 246). It was hypothesised that participation in the PRO program would increase levels of PTG and lower levels of PTSD when compared to recruits in the control condition. Using multilevel modelling and post-hoc analyses, results indicated there were significantly higher levels of PTG across multiple dimensions when compared to the control group. There was no effect on PTSD symptoms with both conditions showing a floor effect. The research indicated the potential value of developing interventions that elicit reflections on the potential for positive as well as negative outcomes of experiencing traumatic and other highly challenging events.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
The impact that stressful encounters have upon long-lasting behavioural phenotypes is varied. Whereas a significant proportion of the population will develop "stress-related" conditions such as post-traumatic stress disorder or depression in later life, the majority are considered "resilient" and are able to cope with stress and avoid such psychopathologies. The reason for this heterogeneity is undoubtedly multi-factorial, involving a complex interplay between genetic and environmental factors. Both genes and environment are of critical importance when it comes to developmental processes, and it appears that subtle differences in either of these may be responsible for altering developmental trajectories that confer vulnerability or resilience. At the molecular level, developmental processes are regulated by epigenetic mechanisms, with recent clinical and pre-clinical data obtained by ourselves and others suggesting that epigenetic differences in various regions of the brain are associated with a range of psychiatric disorders, including many that are stress-related. Here we provide an overview of how these epigenetic differences, and hence susceptibility to psychiatric disorders, might arise through exposure to stress-related factors during critical periods of development.