154 resultados para Temperature--Physiological effect.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a hybrid numerical simulation of the growth kinetics of carbon nanowall-like nanostructures in the plasma and neutral gas synthesis processes are presented. The low-temperature plasma-based process was found to have a significant advantage over the purely neutral flux deposition in providing the uniform size distribution of the nanostructures. It is shown that the nanowall width uniformity is the best (square deviations not exceeding 1.05) in high-density plasmas of 3.0× 1018 m-3, worsens in lower-density plasmas (up to 1.5 in 1.0× 1017 m-3 plasmas), and is the worst (up to 1.9) in the neutral gas-based process. This effect has been attributed to the focusing of ion fluxes by irregular electric field in the vicinity of plasma-grown nanostructures on substrate biased with -20 V potential, and differences in the two-dimensional adatom diffusion fluxes in the plasma and neutral gas-based processes. The results of our numerical simulations are consistent with the available experimental reports on the effect of the plasma process parameters on the sizes and shapes of relevant nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2–5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children’s health into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emission of particles in the ultrafine range (<100 nm) from laser printers has not been reported until recently (Uhde et al., 2006; He et al., 2007; Morawska et al., 2009). The research reported to date has provided a body of information about printer emissions and shed light on particle formation mechanisms. However, until now, the effect of fuser roller temperature on particle emissions had not been comprehensively investigated...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a population-based ecological study designed to investigate the issue of mortality displacement (or "harvesting" effect) in the assessment of temperature-related deaths in Brisbane, Australia. It examines the temperature impacts on mortality, and assesses the harvesting effects on the temperature–related deaths. This study contributes to the knowledge base of understanding the temperature-mortality relationship and assists in formulating and evaluating public health intervention strategies within the context of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sleep loss, widespread in today’s society and associated with a number of clinical conditions, has a detrimental effect on a variety of cognitive domains including attention. This study examined the sequelae of sleep deprivation upon BOLD fMRI activation during divided attention. Twelve healthy males completed two randomized sessions; one after 27 h of sleep deprivation and one after a normal night of sleep. During each session, BOLD fMRI was measured while subjects completed a cross-modal divided attention task (visual and auditory). After normal sleep, increased BOLD activation was observed bilaterally in the superior frontal gyrus and the inferior parietal lobe during divided attention performance. Subjects reported feeling significantly more sleepy in the sleep deprivation session, and there was a trend towards poorer divided attention task performance. Sleep deprivation led to a down regulation of activation in the left superior frontal gyrus, possibly reflecting an attenuation of top-down control mechanisms on the attentional system. These findings have implications for understanding the neural correlates of divided attention and the neurofunctional changes that occur in individuals who are sleep deprived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Older adults have increased visual impairment, including refractive blur from presbyopic multifocal spectacle corrections, and are less able to extract visual information from the environment to plan and execute appropriate stepping actions; these factors may collectively contribute to their higher risk of falls. The aim of this study was to examine the effect of refractive blur and target visibility on the stepping accuracy and visuomotor stepping strategies of older adults during a precision stepping task. Methods: Ten healthy, visually normal older adults (mean age 69.4 ± 5.2 years) walked up and down a 20 m indoor corridor stepping onto selected high and low-contrast targets while viewing under three visual conditions: best-corrected vision, +2.00 DS and +3.00 DS blur; the order of blur conditions was randomised between participants. Stepping accuracy and gaze behaviours were recorded using an eyetracker and a secondary hand-held camera. Results: Older adults made significantly more stepping errors with increasing levels of blur, particularly exhibiting under-stepping (stepping more posteriorly) onto the targets (p<0.05), while visuomotor stepping strategies did not significantly alter. Stepping errors were also significantly greater for the low compared to the high contrast targets and differences in visuomotor stepping strategies were found, including increased duration of gaze and increased interval between gaze onset and initiation of the leg swing when stepping onto the low contrast targets. Conclusions: These findings highlight that stepping accuracy is reduced for low visibility targets, and for high levels of refractive blur at levels typically present in multifocal spectacle corrections, despite significant changes in some of the visuomotor stepping strategies. These findings highlight the importance of maximising the contrast of objects in the environment, and may help explain why older adults wearing multifocal spectacle corrections exhibit an increased risk of falling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose To quantify the effects of driver age on night-time pedestrian conspicuity, and to determine whether individual differences in visual performance can predict drivers' ability to recognise pedestrians at night. Methods Participants were 32 visually normal drivers (20 younger: M = 24.4 years ± 6.4 years; 12 older: M = 72.0 years ± 5.0 years). Visual performance was measured in a laboratory-based testing session including visual acuity, contrast sensitivity, motion sensitivity and the useful field of view. Night-time pedestrian recognition distances were recorded while participants drove an instrumented vehicle along a closed road course at night; to increase the workload of drivers, auditory and visual distracter tasks were presented for some of the laps. Pedestrians walked in place, sideways to the oncoming vehicles, and wore either a standard high visibility reflective vest or reflective tape positioned on the movable joints (biological motion). Results Driver age and pedestrian clothing significantly (p < 0.05) affected the distance at which the drivers first responded to the pedestrians. Older drivers recognised pedestrians at approximately half the distance of the younger drivers and pedestrians were recognised more often and at longer distances when they wore a biological motion reflective clothing configuration than when they wore a reflective vest. Motion sensitivity was an independent predictor of pedestrian recognition distance, even when controlling for driver age. Conclusions The night-time pedestrian recognition capacity of older drivers was significantly worse than that of younger drivers. The distance at which drivers first recognised pedestrians at night was best predicted by a test of motion sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine the effect of Type 1 diabetes (DM1) on amplitude of accommodation. Method: There were 43 participants (33 ± 8 years) with DM1 and 32 (34 ± 8 years) age-balanced controls. Amplitude was measured objectively with a COAS wavefront aberrometer and subjectively with a Badal hand optometer. Results: Across both groups, objective amplitude was less than subjective amplitude by 1.4 ± 1.2 D. People with diabetes had lower objective (2.7±1.6 D) and subjective (4.0±1.7 D) amplitudes than people without diabetes (objective 4.1±2.1 D, subjective 5.6±2.1 D). For the DM1 group, the objective and subjective multivariate linear regressions were 7.1 – 0.097Age – 0.076DiabDur (R2 0.51) and 9.1 –0.103Age – 0.106DiabDur (R2 0.63), respectively. Conclusion: Objective and subjective techniques showed lowered amplitude of accommodation in DM1 participants compared with age-matched controls. Loss was affected strongly by duration of diabetes. People with diabetes will experience presbyopia earlier in life than people without diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses following high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise, followed by one of two recovery interventions: 10 min of cold water immersion at 10°C, or 10 min active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 h and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during six sets of 10 squats at 80% 1RM. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, the participants lifted a greater load (p<0.05; 38%; Cohen’s d 1.3) following CWI compared with active recovery. During CWI, muscle temperature decreased 6°C below post-exercise values, and remained below pre-exercise values for another 35 min. Venous blood O2 saturation decreased below pre-exercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma interleukin-6 concentration was higher after CWI compared with active recovery. These results suggest that cold water immersion after resistance exercise allow athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.