132 resultados para Synthesis of Nitrones
Resumo:
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to ‘empty’ reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence.
Resumo:
Molecular imaging is utilised in modern medicine to aid in the diagnosis and treatment of disease by allowing its spatiotemporal state to be examined in vivo. This study focuses on the development of novel multimodal molecular imaging agents based on hyperbranched polymers that combine the complementary capabilities of optical fluorescence imaging and positron emission tomography-computed tomography (PET/CT) into one construct. RAFT-mediated polymerisation was used to prepare two hydrophilic hyperbranched polymers that were differentiated by their size and level of branching. The multiple functional end-groups facilitated covalent attachment of both near infrared fluorescent dyes for optical imaging, as well as a copper chelator allowing binding of 64Cu as a PET radio nuclei. In vivo multimodal imaging of mice using PET/CT and planar optical imaging was first used to assess the biodistribution of the polymeric materials and it was shown that the larger and more branched polymer had a significantly longer circulation time. The larger constructs were also shown to exhibit enhanced accumulation in solid tumours in a murine B16 melanoma model. Importantly, it was demonstrated that the PET modality gave rise to high sensitivity immediately after injection of the agent, while the optical modality facilitated extended longitudinal studies, thus highlighting how the complementary capabilities of the molecular imaging agents can be useful for studying various diseases, including cancer.
Resumo:
This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.
Resumo:
Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.
Resumo:
Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.
Resumo:
Design and synthesis of a novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives are reported and their in vitro thyroid hormone receptor selectivity has been evaluated in the thyroid luciferase receptor assay. The 3-[3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)-phenylamino]-4-hydroxy-cyclobut-3-ene-1,2-dione 21 has shown selectivity towards thyroid hormone receptor β.
Resumo:
Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.
Resumo:
A new procedure for the preparation of amorphous Ni-Co-B nanoparticles is reported, with a detailed investigation of their morphology by X-ray diffraction and transmission electron microscopy, as well as their magnetic properties. Many factors, such as chemical composition, anisotropy, size and shape of the particles, were controlled through chemical synthesis, resulting in the control of morphological and magnetic properties of the nanoparticles. Controlling pH values with ethylenediamine and using sodium dodecyl sulfate surfactant lowered the size of the nanoparticles to below 10 nm. Such a small structure and chemical disorder in nanocrystalline materials lead to magnetic properties that are different from those in their bulk-sized counterparts. The obtained nanoparticles can be used for different purposes, from pharmaceutical applications to implementations in different materials technology. The focus of this research is the synthesis of Ni-Co-B nanoparticles in a new way and studying the reaction of Ni-Co-B nanoparticles with Mg and B precursors and their effect on MgB2 properties. New nanostructures are formed in the reaction of Ni-Co-B nanoparticles with Mg: Mg2Ni, Co2Mg and possibly Mg2Co.
Resumo:
Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.
Resumo:
Nanoconfined synthesized crystalline fullerene mesoporous carbon (C60-FMC) with bimodal pore architectures of 4.95 nm and 10-15 nm pore sizes characterized by XRD, TEM, nitrogen adsorption/ desorption isotherm and solid-state NMR, and the material was used for protein immobilization. The solid-state 13C NMR spectrum of C60-FMC along with XRD, BET and TEM confirms the formation of fullerene mesoporous carbon structure C60-FMC. The immobilization of albumin (from bovine serum, BSA) protein biomolecule in a buffer solution at pH 4.7 was used to determine the adsorption properties of the C60-FMC material and its structural changes investigated by FT-IR. We demonstrated that the C60-FMC with high surface area and pore volumes have excellent adsorption capacity towards BSA protein molecule. Protein adsorption experiments clearly showed that the C60-FMC with bimodal pore architectures (4.95 nm and 10-15 nm) are suitable material to be used for protein adsorption
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Resumo:
Polymer-DNA conjugates in which one nucleic acid strand contains fluorine-substituted nucleobases have been prepared and characterised. The efficacy of these novel F-19 nucleic acid-polymer conjugates as sensitive and selective in vitro reporters of DNA binding events is demonstrated through a number of rapid-acquisition MR sequences. The conjugates respond readily and in a sequence specific manner to external target oligonucleotide sequences by changes in hybridisation. In turn, these structural changes in polymer-nucleotide conjugates translate into responses which are detectable in fluorine relaxation and diffusion switches, and which can be monitored by in vitro Spin Echo and DOSY NMR spectroscopy. Although complementary to conventional FRET methods, the excellent diagnostic properties of fluorine nuclei make this approach a versatile and sensitive probe of molecular structure and conformation in polymeric assemblies.