215 resultados para Strain Intensity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the property of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB; strain also induces an electronic phase transition between half-metal and metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain condition in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Dehydration and symptoms of heat illness are common among the surface mining workforce. This investigation aimed to determine whether heat strain and hydration status exceeded recommended limits. Methods Fifteen blast crew personnel operating in the tropics were monitored across a 12-hour shift. Heart rate, core body temperature, and urine-specific gravity were continuously recorded. Participants self-reported fluid consumption and completed a heat illness symptom inventory. Results Core body temperature averaged 37.46 +/- 0.13[degrees]C, with the group maximum 37.98 +/- 0.19[degrees]C. Mean urine-specific gravity was 1.024 +/- 0.007, with 78.6% of samples 1.020 or more. Seventy-three percent of workers reported at least one symptom of heat illness during the shift. Conclusions Core body temperature remained within the recommended limits; however, more than 80% of workers were dehydrated before commencing the shift, and tended to remain so for the duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across 5 centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity-modulated radiotherapy (IMRT) and 47 treated with volumetric-modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organ-at-risk sparing, through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each organ-at-risk. Statistical significance was evaluated using two-tailed Welch’s T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the organs-at-risk: with increased compliance with recommended organ-at-risk dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To compare the classification accuracy of previously published RT3 accelerometer cut-points for youth using energy expenditure, measured via portable indirect calorimetry, as a criterion measure. DESIGN: Cross-sectional cross-validation study. METHODS: 100 children (mean age 11.2±2.8 years, 61% male) completed 12 standardized activities trials (3 sedentary, 5 lifestyle and 4 ambulatory) while wearing an RT3 accelerometer. V˙O2 was measured concurrently using the Oxycon Mobile portable calorimeter. Cut-points by Vanhelst (VH), Rowlands (RW), Chu (CH), Kavouras (KV) and the RT3 manufacturer (RT3M) were used to classify PA intensity as sedentary (SED), light (LPA), moderate (MPA) or vigorous (VPA). Classification accuracy was evaluated using the area under the Receiver Operating Characteristic curve (ROC-AUC) and weighted Kappa (κ). RESULTS: For moderate-to-vigorous PA (MVPA), VH, KV and RW exhibited excellent accuracy classification (ROC-AUC≥0.90), while the CH and RT3M exhibited good classification accuracy (ROC-AUC>0.80). Classification accuracy for LPA was fair to poor (ROC-AUC<0.76). For SED, VH exhibited excellent classification accuracy (ROC-AUC>0.90), while RW, CH, and RT3M exhibited good classification accuracy (ROC-AUC>0.80). Kappa statistics ranged from 0.67 (VH) to 0.55 (CH). CONCLUSIONS: All cut-points provided acceptable classification accuracy for SED and MVPA, but limited accuracy for LPA. On the basis of classification accuracy over all four levels of intensity, the use of the VH cut-points is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Does job control act as a stress-buffer when employees' type and level of work self-determination is taken into account? It was anticipated that job control would only be stress-buffering for employees high in self-determined and low in non-self-determined work motivation. In contrast, job control would be stress-exacerbating for employees who were low in self-determined and high in non-self-determined work motivation. Employees of a health insurance organization (N = 123) completed a survey on perceptions of role overload, job control, work self-determination, and a range of strain and engagement indicators. Results revealed that, when individuals high in self-determination perceived high job control, they experienced greater engagement (in the form of dedication to their work). In addition, when individuals high in non-self-determination perceived high job demands, they experienced more health complaints. A significant 3-way interaction demonstrated that, for individuals low in non-self-determination, high job control had the anticipated stress-buffering effect on engagement (in the form of absorption in their work). In addition, low job control was stress-exacerbating. However, contrary to expectations, for those high in non-self-determination, high job control was just as useful as low job control as a stress-buffer. The practical applications of these findings to the organizational context are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karasek's Job Demand-Control model proposes that control mitigates the positive effects of work stressors on employee strain. Evidence to date remains mixed and, although a number of individual-level moderators have been examined, the role of broader, contextual, group factors has been largely overlooked. In this study, the extent to which control buffered or exacerbated the effects of demands on strain at the individual level was hypothesized to be influenced by perceptions of collective efficacy at the group level. Data from 544 employees in Australian organizations, nested within 23 workgroups, revealed significant three-way cross-level interactions among demands, control and collective efficacy on anxiety and job satisfaction. When the group perceived high levels of collective efficacy, high control buffered the negative consequences of high demands on anxiety and satisfaction. Conversely, when the group perceived low levels of collective efficacy, high control exacerbated the negative consequences of high demands on anxiety, but not satisfaction. In addition, a stress-exacerbating effect for high demands on anxiety and satisfaction was found when there was a mismatch between collective efficacy and control (i.e. combined high collective efficacy and low control). These results provide support for the notion that the stressor-strain relationship is moderated by both individual- and group-level factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. PURPOSE This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. METHODS A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and VO 2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). RESULTS Across all four intensity levels, the EV (κ = 0.68) and FT (κ = 0.66) cut points exhibited significantly better agreement than TR (κ = 0.62), MT (κ = 0.54), and PU (κ = 0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate-to vigorous-intensity physical activity (ROC-AUC = 0.90) than TR, PU, or MT cut points (ROC-AUC = 0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC = 0.90). CONCLUSIONS On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in sedentary, light-, moderate-, and vigorous-intensity activity in children and adolescents. Copyright © 2011 by the American College of Sports Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To explore the feasibility of conducting a 10-week home-based physical activity (PA) programme and evaluate the changes in insulin sensitivity (S I) commensurate with the programme in obese young people. Design Open-labelled intervention. Setting Home-based intervention with clinical assessments at a tertiary paediatric hospital. Subjects 18 obese (body mass index (BMI)>International Obesity Task Force age and sex-specifi c cut-offs) children and adolescents (8-18 years, 11 girls/7 boys) were recruited. 15 participants (nine girls/six boys, mean±SE age 11.8±0.6 years, BMI-SD scores (BMI-SDS) 3.5±0.1, six prepubertal/nine pubertal) completed the intervention. Intervention The programme comprised biweekly home visits over 10 weeks with personalised plans implemented aiming to increase moderate-intensity PA. Pedometers and PA diaries were used as self-monitoring tools. The goals were to (1) teach participants behavioural skills related to adopting and maintaining an active lifestyle and (2) increase daily participation in PA. Outcome measures Mean steps/day were assessed. SI assessed by the frequently sampled intravenous glucose tolerance test and other components of the insulin resistance syndrome were measured. Results Mean steps/day increased significantly from 10 363±927 (baseline) to 13 013±1131 (week 10) (p<0.05). S I was also significantly increased, despite no change in BMI-SDS, and remained so after an additional 10-week follow-up. Conclusions The results suggest that such a homebased PA programme is feasible. S I improved without changes in BMI-SDS. More rigorous evaluations of such programmes are warranted.