129 resultados para Semi-Gas Kinetics (Sgk) Model
Resumo:
The coal seam gas (CSG) industry is globally of potentially great importance economically. This study exemplifies the complex relationship between land use and management, groundwater impact and associated water treatment especially in relation to Queensland where a significant increase in the amount of gas extracted over the past 6 years has occurred. In order to effectively manage the environmental impact of the CSG industry it is necessary to appropriately understand the nature of the gas deposits, methods for gas collection, the physicochemical composition of the by-product associated water and the technologies available for water remediation. Australia is mainly considered arid and semi-arid and thus there is a need to not only beneficially reuse water resources but also protect existing ground water reservoirs such as the Great Artesian Basin (GAB). This paper focussed primarily on the Surat Basin located in Queensland and northern New South Wales. The mechanism for CSG formation, relation to local geological features, extraction approach and the potential impact/benefits of associated water was discussed. An outline of the current legislative requirements on physical and chemical properties of associated water in the Surat Basin was also provided, as well as the current treatment technologies used by the major CSG companies. This review was of significance in relation to the formulation of the most appropriate and cost effective management of associated water, while simultaneously preserving existing water resources and the environment.
Resumo:
Healthy transparent cornea depends upon the regulation of fluid, nutrient and oxygen transport through the tissue to sustain cell metabolism and other critical processes for normal functioning. This research considers the corneal geometry and investigates oxygen distribution using a two-dimensional Monod kinetic model, showing that previous studies make assumptions that lead to predictions of near-anoxic levels of oxygen tension in the limbal regions of the cornea. It also considers the comparison of experimental spatial and temporal data with the predictions of novel mathematical models with respect to distributed mitotic rates during corneal epithelial wound healing.
Resumo:
This study reports an investigation of the ion exchange treatment of sodium chloride solutions in relation to use of resin technology for applications such as desalination of brackish water. In particular, a strong acid cation (SAC) resin (DOW Marathon C) was studied to determine its capacity for sodium uptake and to evaluate the fundamentals of the ion exchange process involved. Key questions to answer included: impact of resin identity; best models to simulate the kinetics and equilibrium exchange behaviour of sodium ions; difference between using linear least squares (LLS) and non-linear least squares (NLLS) methods for data interpretation; and, effect of changing the type of anion in solution which accompanied the sodium species. Kinetic studies suggested that the exchange process was best described by a pseudo first order rate expression based upon non-linear least squares analysis of the test data. Application of the Langmuir Vageler isotherm model was recommended as it allowed confirmation that experimental conditions were sufficient for maximum loading of sodium ions to occur. The Freundlich expression best fitted the equilibrium data when analysing the information by a NLLS approach. In contrast, LLS methods suggested that the Langmuir model was optimal for describing the equilibrium process. The Competitive Langmuir model which considered the stoichiometric nature of ion exchange process, estimated the maximum loading of sodium ions to be 64.7 g Na/kg resin. This latter value was comparable to sodium ion capacities for SAC resin published previously. Inherent discrepancies involved when using linearized versions of kinetic and isotherm equations were illustrated, and despite their widespread use, the value of this latter approach was questionable. The equilibrium behaviour of sodium ions form sodium fluoride solution revealed that the sodium ions were now more preferred by the resin compared to the situation with sodium chloride. The solution chemistry of hydrofluoric acid was suggested as promoting the affinity of the sodium ions to the resin.
Resumo:
This research provides information for providing the required seismic mitigation in building structures through the use of semi active and passive dampers. The Magneto-Rheological (MR) semi-active damper model was developed using control algorithms and integrated into seismically excited structures as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Research information can be used for the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.
Resumo:
Background Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. Methods The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Results Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. Conclusions The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.
Resumo:
Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.
Resumo:
Intermittent microwave convective (IMCD) drying is an advanced drying technology that improves both energy efficiency and food quality during the drying of food materials. Despite numerous experimental studies available for IMCD, there is no complete multiphase porous media model available to describe the process. A multiphase porous media model considering liquid water, gases and the solid matrix inside the food during drying can provide in depth understanding of IMCD. In this article, firstly a multiphase porous media model was developed for IMCD. Then the model is validated against experimental data by comparing moisture content and temperature distributions after each heating and tempering periods. The profile of vapour pressures and evaporation during IMCD are presented and discussed. The relative contribution of water and vapour fluxes due to gas pressure and diffusion demonstrated that the fluxes due are relatively higher in IMCD compared to convection drying and this makes the IMCD faster.
Resumo:
Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.