243 resultados para SOMATOSTATIN RECEPTOR SUBTYPES
Resumo:
1. The low density lipoprotein receptor is an important regulator of serum cholesterol which may have implications for the development of both hypertension and obesity. In this study, genotypes for a low density lipoprotein receptor gene (LDLR) dinucleotide polymorphism were determined in both lean and obese normotensive populations. 2. In previous cross-sectional association studies an ApaLI and a HincII polymorphism for LDLR were shown to be associated with obesity in essential hypertensives. However, these polymorphisms did not show an association with obesity in normotensives. 3. In contrast, this study reports that preliminary results for an LDLR microsatellite marker, located more towards the 3' end of the gene, show a significant association with obesity in the normotensive population studied. These results indicate that LDLR could play an important role in the development of obesity, which might be independent of hypertension.
Resumo:
1. There is evidence to suggest that essential hypertension is a polygenic disorder and that it arises from yet-to-be-identified predisposing variants of certain genes that influence blood pressure. The cloning of various hormone, enzyme, adrenoceptor and hormone receptor genes whose products are involved in blood pressure control and the identification of polymorphisms of these has permitted us to test their genetic association with hypertension. 2. Cross-sectional analyses of a number of candidate gene markers were performed in hypertensive and normotensive subjects who were selected on the basis of both parents being either hypertensive or normotensive, respectively, and the difference in total alleles on all chromosomes for each polymorphism between the hypertensive and normotensive groups was test by χ analysis with one degree of freedom. 3. A marked association was observed between hypertension and insertion alleles of polymorphisms of the insulin receptor gene (INSR) (P<0.0040) and the dipeptidyl carboxypeptidase-1 (angiotensin I-converting enzyme; kininase II) gene (DCP1) (P<0.0018). No association with hypertension was evident, however, for polymorphisms of the growth hormone, low-density lipoprotein receptor, renal kallikrein, α2- and β1-adrenoreceptor, atrial natriuretic factor and insulin genes. 4. All but one of the hypertensive subjects had at least one of the hypertension-associated alleles, and although subjects homozygous for both were three times more frequent in the hypertensive group, examination of the nine possible genotypes suggested that the INSR and DCP1 alleles are independent markers for hypertension. 5. The present results suggest that genetic variant(s) in close linkage disequilibrium with polymorphisms at INSR and DCP1 may be involved in part in the aetiology of essential hypertension.
Resumo:
The acetylcholine receptor (AchR) antibody assay has a key role in the diagnosis of myasthenia gravis. In this article, the role of AchR antibody assay in the diagnosis of ocular and generalized myasthenia gravis is reviewed, and compared to standard means of diagnosing the disease by clinical and electrophysiological methods.
Resumo:
The relationship of acetylcholine receptor (AchR) antibodies to disease activity in myasthenia gravis (MG) is controversial. Some authors claim a direct correlation with disease activity and treatment, in particular plasmapheresis therapy, whereas others have commented on the poor overall correlation of antibody levels with clinical state. Antibody levels were examined in a population of MG patients and correlated with disease activity and response to treatment. Antibodies to skeletal muscle AchR were found in most patients with generalised MG (24/25) and in about half of the patients with purely ocular MG (6/10) and in neither of 2 patients with congenital MG. There was scant correlation with disease activity or response to treatment. It is concluded that the assay is more useful for diagnosis than for management of MG.
Resumo:
Before the age of 75 years, approximately 10% of women will be diagnosed with breast cancer, one of the most common malignancies and a leading cause of death among women. The objective of this study was to determine if expression of the nuclear receptor coactivators 1 and 3 (NCoA1 and NCoA3) varied in breast cancer grades. RNA was extracted from 25 breast tumours and transcribed into cDNA which underwent semi-quantitative polymerase chain reaction, normalised using 18S. Analysis indicated that an expression change for NCoA1 in cancer grades and estrogen receptor alpha negative tissue (P= 0.028 and 0.001 respectively). NCoA1 expression increased in grade 3 and estrogen receptor alpha negative tumours, compared to controls. NCoA3 showed a similar, but not significant, trend in grade and a non-significant decrease in estrogen receptor alpha negative tissues. Expression of NCoA1 in late stage and estrogen receptor alpha negative breast tumours may have implications to breast cancer treatment, particularly in the area of manipulation of hormone signalling systems in advanced tumours.
Resumo:
BACKGROUND: Oestrogen receptor 1 ( ESR1) is located in region 6q25.1 and encodes a ligand-activated transcription factor composed of several domains important for hormone binding and transcription activation. Progesterone receptor ( PGR) is located in 11q22-23 and mediates the role of progesterone interacting with different transcriptional co-regulators. ESR1 and PGR have previously been implicated in migraine susceptibility. Here, we report the results of an association study of these genes in a migraine pedigree from the genetic isolate of Norfolk Island, a population descended from a small number of Isle of Man "Bounty Mutineer" and Tahitian founders.
Resumo:
1. Previous glucagon receptor gene (GCGR) studies have shown a Gly40Ser mutation to be more prevalent in essential hypertension and to affect glucagon binding affinity to its receptor. An Alu-repeat poly(A) polymorphism colocalized to GCGR was used in the present study to test for association and linkage in hypertension as well as association in obesity development. 2. Using a cross-sectional approach, 85 hypertensives and 95 normotensives were genotyped using polymerase chain reaction primers flanking the Alu-repeat. Both hypertensive and normotensive populations were subdivided into lean and obese categories based on body mass index (BMI) to determine involvement of this variant in obesity. For the linkage study, 89 Australian Caucasian hypertension affected sibships (174 sibpairs) were genotyped and the results were analysed using GENE-HUNTER, Mapmaker Sibs, ERPA and SPLINK (all freely available from http://linlkage.rockefeller. edu/soft/list.html). 3. Cross-sectional results for both hypertension and obesity were analysed using Chi-squared and Monte Carlo analyses. Results did not show an association of this variant with either hypertension (χ2 = 6.9, P = 0.14; Monte Carlo χ2 = 7.0, P = 0.11; n = 5000) or obesity (χ2 = 3.3, P = 0.35; Monte Carlo χ2 = 3.26, P = 0.34; n = 5000). In addition, results from the linkage study using hypertensive sib-pairs did not indicate linkage of the poly(A) repent with hypertension. Hence, results did not indicate a role far the Alu-repeat in either hypertension or obesity. However, as the heterozygosity of this poly(A) repeat is low (35%), a larger number of hypertensive sib-pairs may be required to draw definitive conclusions.
Resumo:
OBJECTIVE To determine whether a microsatellite polymorphism located towards the 3' end of the low density lipoprotein receptor gene (LDLR) is associated with obesity. DESIGN A cross-sectional case-control study. SUBJECTS One hundred and seven obese individuals, defined as a body mass index (BMI) ≤ 26 kg/m2, and 163 lean individuals, defined as a BMI < 26 kg/m2. MEASUREMENTS BMI, blood pressure, serum lipids, alleles of LDLR microsatellite (106 bp, 108 bp and 112 bp). RESULTS There was a significant association between variants of the LDLR microsatellite and obesity, in the overall tested population, due to a contributing effect in females (χ2 = 12.3, P = 0.002), but not in males (χ2 = 0.3, P = 0.87). In females, individuals with the 106 bp allele were more likely to be lean, while individuals with the 112 bp and/or 108 bp alleles tended to be obese. CONCLUSIONS These results suggest that in females, LDLR may play a role in the development of obesity.
Resumo:
BACKGROUND: Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. METHODS: RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. RESULTS: Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). CONCLUSION: Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue.
Resumo:
Insulin has cardiovascular actions and patients with essential hypertension display insulin resistance. A cross-sectional study of the R1 RFLP of the insulin receptor gene (INSR) was carried out in 67 hypertensive (HT) and 75 normotensive (NT) subjects whose parents had a similar blood pressure status at age ≥50. The frequency of the minor (+) allele was 0.31 in HTs and 0.44 in NTs, and the difference between observed alleles in all subjects in each group was significant (χ2 = 4.8, P<0.05). Allele frequencies of a BglI RFLP of the insulin gene, however, did not differ between the HT and NT groups. The data thus provide evidence in favour of an association of HT with a polymorphism at the INSR locus (19p 13.3-13.2), so implicating this locus, and possibly a genetic variant of the insulin receptor itself, in HT.
Resumo:
A recent cross-sectional study has demonstrated a significant association of the R1 RsaI restriction fragment length polymorphism of the insulin receptor gene (INSR) with human essential hypertension. In the present study, an alternative approach, involving linkage analysis, was carried out using 8 hypertensive families with 5 or more affected members. Five of the families were found to be informative and in one of these pedigrees a conclusion of non-linkage of INSR and hypertension could be made on the basis of an obligate recombinant in one generation which yielded a Lod score of - ∞ at a recombination fraction (θ) of zero. In another family, the largest studied, a positive Lod score was obtained at θ = 0, but this was below the level required for a conclusion of linkage. Lod score at θ = 0 for a marker at the insulin locus in this family was negative. The present study has thus demonstrated one pedigree in which hypertension is not linked to the insulin receptor locus.
Resumo:
Obese (BMI ≥ 26 kg/m 2; n = 51) and lean (BMI <26 kg/m 2; n = 61) Caucasian patients with severe, familial essential hypertension, were compared with respect to genotype and allele frequencies of a HincII RFLP of the low density lipoprotein receptor gene (LDLR). A similar analysis was performed in obese (n = 28) and lean (n = 68) normotensives. A significant association of the C allele of the T→C variant responsible for this RFLP was seen with obesity (χ 2 = 4.6, P = 0.029) in the hypertensive, but not in the normotensive, group (odds ratio = 3.0 for the CC genotype and 2.7 for CT). Furthermore, BMI tracked with genotypes of this allele in the hypertensives (P = 0.046). No significant genotypic relationship was apparent for plasma lipids. Significant linkage disequilibrium was, moreover, noted between the HincII RFLP and an ApaLI RFLP (χ 2 = 33, P<0.0005) that has previously shown even stronger association with obesity (odds ratio 19.6 for cases homozygous for the susceptibility allele and 15.2 for het-erozygotes). The present study therefore adds to our previous evidence implicating LDLR as a locus for obesity in patients with essential hypertension.
Resumo:
Recent evidence indicates that the estrogen receptor-a-negative, androgen receptor (AR)- positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5a-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDAMB- 453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. Endocrine-Related Cancer (2012) 19 599–613
Resumo:
Endometrial cancer is one of the most common female diseases in developed nations and is the most commonly diagnosed gynaecological cancer in Australia. The disease is commonly classified by histology: endometrioid or non-endometrioid endometrial cancer. While non-endometrioid endometrial cancers are accepted to be high-grade, aggressive cancers, endometrioid cancers (comprising 80% of all endometrial cancers diagnosed) generally carry a favourable patient prognosis. However, endometrioid endometrial cancer patients endure significant morbidity due to surgery and radiotherapy used for disease treatment, and patients with recurrent disease have a 5-year survival rate of less than 50%. Genetic analysis of women with endometrial cancer could uncover novel markers associated with disease risk and/or prognosis, which could then be used to identify women at high risk and for the use of specialised treatments. Proteases are widely accepted to play an important role in the development and progression of cancer. This PhD project hypothesised that SNPs from two protease gene families, the matrix metalloproteases (MMPs, including their tissue inhibitors, TIMPs) and the tissue kallikrein-related peptidases (KLKs) would be associated with endometrial cancer susceptibility and/or prognosis. In the first part of this study, optimisation of the genotyping techniques was performed. Results from previously published endometrial cancer genetic association studies were attempted to be validated in a large, multicentre replication set (maximum cases n = 2,888, controls n = 4,483, 3 studies). The rs11224561 progesterone receptor SNP (PGR, A/G) was observed to be associated with increased endometrial cancer risk (per A allele OR 1.31, 95% CI 1.12-1.53; p-trend = 0.001), a result which was initially reported among a Chinese sample set. Previously reported associations for the remaining 8 SNPs investigated for this section of the PhD study were not confirmed, thereby reinforcing the importance of validation of genetic association studies. To examine the effect of SNPs from the MMP and KLK families on endometrial cancer risk, we selected the most significantly associated MMP and KLK SNPs from genome-wide association study analysis (GWAS) to be genotyped in the GWAS replication set (cases n = 4,725, controls n = 9,803, 13 studies). The significance of the MMP24 rs932562 SNP was unchanged after incorporation of the stage 2 samples (Stage 1 per allele OR 1.18, p = 0.002; Combined Stage 1 and 2 OR 1.09, p = 0.002). The rs10426 SNP, located 3' to KLK10 was predicted by bioinformatic analysis to effect miRNA binding. This SNP was observed in the GWAS stage 1 result to exhibit a recessive effect on endometrial cancer risk, a result which was not validated in the stage 2 sample set (Stage 1 OR 1.44, p = 0.007; Combined Stage 1 and 2 OR 1.14, p = 0.08). Investigation of the regions imputed surrounding the MMP, TIMP and KLK genes did not reveal any significant targets for further analysis. Analysis of the case data from the endometrial cancer GWAS to identify genetic variation associated with cancer grade did not reveal SNPs from the MMP, TIMP or KLK genes to be statistically significant. However, the representation of SNPs from the MMP, TIMP and KLK families by the GWAS genotyping platform used in this PhD project was examined and observed to be very low, with the genetic variation of four genes (MMP23A, MMP23B, MMP28 and TIMP1) not captured at all by this technique. This suggests that comprehensive candidate gene association studies will be required to assess the role of SNPs from these genes with endometrial cancer risk and prognosis. Meta-analysis of gene expression microarray datasets curated as part of this PhD study identified a number of MMP, TIMP and KLK genes to display differential expression by endometrial cancer status (MMP2, MMP10, MMP11, MMP13, MMP19, MMP25 and KLK1) and histology (MMP2, MMP11, MMP12, MMP26, MMP28, TIMP2, TIMP3, KLK6, KLK7, KLK11 and KLK12). In light of these findings these genes should be prioritised for future targeted genetic association studies. Two SNPs located 43.5 Mb apart on chromosome 15 were observed from the GWAS analysis to be associated with increased endometrial cancer grade, results that were validated in silico in two independent datasets. One of these SNPs, rs8035725 is located in the 5' untranslated region of a MYC promoter binding protein DENND4A (Stage 1 OR 1.15, p = 9.85 x 10P -5 P, combined Stage 1 and in silico validation OR 1.13, p = 5.24 x 10P -6 P). This SNP has previously been reported to alter the expression of PTPLAD1, a gene involved in the synthesis of very long fatty acid chains and in the Rac1 signaling pathway. Meta-analysis of gene expression microarray data found PTPLAD1 to display increased expression in the aggressive non-endometrioid histology compared with endometrioid endometrial cancer, suggesting that the causal SNP underlying the observed genetic association may influence expression of this gene. Neither rs8035725 nor significant SNPs identified by imputation were predicted bioinformatically to affect transcription factor binding sites, indicating that further studies are required to assess their potential effect on other regulatory elements. The other grade- associated SNP, rs6606792, is located upstream of an inferred pseudogene, ELMO2P1 (Stage 1 OR 1.12, p = 5 x 10P -5 P; combined Stage 1 and in silico validation OR 1.09, p = 3.56 x 10P -5 P). Imputation of the ±1 Mb region surrounding this SNP revealed a cluster of significantly associated variants which are predicted to abolish various transcription factor binding sites, and would be expected to decrease gene expression. ELMO2P1 was not included on the microarray platforms collected for this PhD, and so its expression could not be investigated. However, the high sequence homology of ELMO2P1 with ELMO2, a gene important to cell motility, indicates that ELMO2 could be the parent gene for ELMO2P1 and as such, ELMO2P1 could function to regulate the expression of ELMO2. Increased expression of ELMO2 was seen to be associated with increasing endometrial cancer grade, as well as with aggressive endometrial cancer histological subtypes by microarray meta-analysis. Thus, it is hypothesised that SNPs in linkage disequilibrium with rs6606792 decrease the transcription of ELMO2P1, reducing the regulatory effect of ELMO2P1 on ELMO2 expression. Consequently, ELMO2 expression is increased, cell motility is enhanced leading to an aggressive endometrial cancer phenotype. In summary, these findings have identified several areas of research for further study. The results presented in this thesis provide evidence that a SNP in PGR is associated with risk of developing endometrial cancer. This PhD study also reports two independent loci on chromosome 15 to be associated with increased endometrial cancer grade, and furthermore, genes associated with these SNPs to be differentially expressed according in aggressive subtypes and/or by grade. The studies reported in this thesis support the need for comprehensive SNP association studies on prioritised MMP, TIMP and KLK genes in large sample sets. Until these studies are performed, the role of MMP, TIMP and KLK genetic variation remains unclear. Overall, this PhD study has contributed to the understanding of genetic variation involvement in endometrial cancer susceptibility and prognosis. Importantly, the genetic regions highlighted in this study could lead to the identification of novel gene targets to better understand the biology of endometrial cancer and also aid in the development of therapeutics directed at treating this disease.