223 resultados para Reward based model
Resumo:
This paper describes an extended case-based reasoning model that addresses the notion of situatedness in designing through constructive memory. The model is illustrated through an application for predicting the corrosion rate for a specific material on a specific building.
Resumo:
This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.
Resumo:
The researcher’s professional role as an Education Officer was the impetus for this study. Designing and implementing professional development activities is a significant component of the researcher’s position description and as a result of reflection and feedback from participants and colleagues, the creation of a more effective model of professional development became the focus for this study. Few studies have examined all three links between the purposes of professional development that is, increasing teacher knowledge, improving teacher practice, and improving student outcomes. This study is significant in that it investigates the nature of the growth of teachers who participated in a model of professional development which was based upon the principles of Lesson Study. The research provides qualitative and empirical data to establish some links between teacher knowledge, teacher practice, and student learning outcomes. Teacher knowledge in this study refers to mathematics content knowledge as well as pedagogical-content knowledge. The outcomes for students include achievement outcomes, attitudinal outcomes, and behavioural outcomes. As the study was conducted at one school-site, existence proof research was the focus of the methodology and data collection. Developing over the 2007 school year, with five teacher-participants and approximately 160 students from Year Levels 6 to 9, the Lesson Study-principled model of professional development provided the teacher-participants with on-site, on-going, and reflective learning based on their classroom environment. The focus area for the professional development was strategising the engagement with and solution of worded mathematics problems. A design experiment was used to develop the professional development as an intervention of prevailing teacher practice for which data were collected prior to and after the period of intervention. A model of teacher change was developed as an underpinning framework for the development of the study, and was useful in making decisions about data collection and analyses. Data sources consisted of questionnaires, pre-tests and post-tests, interviews, and researcher observations and field notes. The data clearly showed that: content knowledge and pedagogical-content knowledge were increased among the teacher-participants; teacher practice changed in a positive manner; and that a majority of students demonstrated improved learning outcomes. The positive changes to teacher practice are described in this study as the demonstrated use of mixed pedagogical practices rather than a polarisation to either traditional pedagogical practices or contemporary pedagogical practices. The improvement in student learning outcomes was most significant as improved achievement outcomes as indicated by the comparison of pre-test and post-test scores. The effectiveness of the Lesson Study-principled model of professional development used in this study was evaluated using Guskey’s (2005) Five Levels of Professional Development Evaluation.
Resumo:
In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform.
Resumo:
Purpose – In recent years, knowledge-based urban development (KBUD) has introduced as a new strategic development approach for the regeneration of industrial cities. It aims to create a knowledge city consists of planning strategies, IT networks and infrastructures that achieved through supporting the continuous creation, sharing, evaluation, renewal and update of knowledge. Improving urban amenities and ecosystem services by creating sustainable urban environment is one of the fundamental components for KBUD. In this context, environmental assessment plays an important role in adjusting urban environment and economic development towards a sustainable way. The purpose of this paper is to present the role of assessment tools for environmental decision making process of knowledge cities. Design/methodology/approach – The paper proposes a new assessment tool to figure a template of a decision support system which will enable to evaluate the possible environmental impacts in an existing and future urban context. The paper presents the methodology of the proposed model named ‘ASSURE’ which consists of four main phases. Originality/value –The proposed model provides a useful guidance to evaluate the urban development and its environmental impacts to achieve sustainable knowledge-based urban futures. Practical implications – The proposed model will be an innovative approach to provide the resilience and function of urban natural systems secure against the environmental changes while maintaining the economic development of cities.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Coordination of empirical laws and explanatory theory using model-based reasoning in Year 10 science