203 resultados para PHOTOLUMINESCENCE BEHAVIOR
Resumo:
Obesity rates are increasing in children of all ages, and reduced physical activity (PA) is a likely contributor to this trend. Little is known about the physical activity behavior of preschool-age children, or about the influence of preschool attendance on physical activity. Purpose The purpose of this study was to quantify the physical activity levels of children attending a center-based half-day preschool program. Methods Forty-two 3-to-5-year old children (Mean age = 4.0 ± 0.7, 54.8% Male, Mean BMI = 16.5 ± 5.5, Mean BMI %tile = 52.1 ± 33.5) from four class groups (two morning and two afternoon), wore an Actigraph 7164 accelerometer for the entire halfday program (including classroom learning experiences, snack and recess time) 2 times per week, for 10 weeks (20 activity monitoring records in total). Activity counts for each 5-sec interval were uploaded to a customized data reduction program to determine total counts, minutes of moderate PA (MPA) (3–5.9 METs), and minutes of vigorous PA (VPA) (> = 6 METs) per session. Counts were categorized as either MPA or VPA using the cutpoints developed by Sirard and colleagues (2001). Results Across the four 2.5 hour programs, the average MPA, VPA and total counts (× 103) were 12.4 ± 3.1 minutes, 18.3 ± 4.6 minutes, and 171.1 ± 29.7 counts, respectively. Thus, on average, children accumulated just over 12 minutes of moderateto-vigorous PA per hour of program attendance. The PA variables did not differ significantly by gender, weight status, or time of day. There were, however, significant age differences, with 3-year-olds exhibiting significantly less PA than their 4- and 5-year-old counterparts. Conclusions These results suggest that young children are relatively lowactive while attending preschool. Accordingly, interventions to increase movement opportunities during the preschool day are warranted.
Resumo:
Advanced grid stiffened composite cylindrical shell is widely adopted in advanced structures due to its exceptional mechanical properties. Buckling is a main failure mode of advanced grid stiffened structures in engineering, which calls for increasing attention. In this paper, the buckling response of advanced grid stiffened structure is investigated by three different means including equivalent stiffness model, finite element model and a hybrid model (H-model) that combines equivalent stiffness model with finite element model. Buckling experiment is carried out on an advanced grid stiffened structure to validate the efficiency of different modeling methods. Based on the comparison, the characteristics of different methods are independently evaluated. It is arguable that, by considering the defects of material, finite element model is a suitable numerical tool for the buckling analysis of advanced grid stiffened structures.
Resumo:
Despite considerable state investment and initiatives, binge drinking is still a major behavioral problem for policy makers and communities in many parts of the world. Furthermore, the practice of bingeing on alcohol seems to be spreading to young people in countries traditionally considered to have moderate drinking behaviors. Using a sociocultural lens and a framework of sociocultural themes from previous literature to develop propositions from their empirical study, the authors examine binge-drinking attitudes and behaviors among young people from high and moderate binge-drinking countries. The authors then make proposals regarding how policy makers can use social marketing more effectively to contribute to behavior change. Qualitative interviews were conducted with 91 respondents from 22 countries who were studying in two high binge-drinking countries at the time. The results show support for three contrasting sociocultural propositions that identify influences on binge drinking across these countries.
Resumo:
Carbon nanoflakes (CNFLs) are synthesized on silicon substrates deposited with carbon islands in a methane environment using hot filament chemical vapor deposition. The structure and composition of the CNFLs are studied using field emission scanning electron microscopy, high-resolution transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the CNFLs are composed of multilayer graphitic sheets and the area and thickness of CNFs increase with the growth time. The photoluminescence (PL) of CNFLs excited by a 325 nm He-Cd laser exhibits three strong bands centered at 408, 526, and 699 nm, which are related to the chemical radicals terminated on the CNFLs and the associated interband transitions. The PL results indicate that the CNFLs are promising as an advanced nano-carbon material capable of generating white light emission. These outcomes are significant to control the electronic structure of CNFLs and contribute to the development of next-generation solid-state white light emission devices. © 2014 the Partner Organisations.
Resumo:
Nitrogenated carbon nanotips (NCNTPs) have been synthesized using customized plasma-enhanced hot filament chemical vapor deposition. The morphological, structural, and photoluminescent properties of the NCNTPs are investigated using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The photoluminescence measurements show that the NCNTPs predominantly emit a green band at room temperature while strong blue emission is generated at 77 K. It is shown that these very different emission behaviors are related to the change of the optical band-gap and the concentration of the paramagnetic defects of the carbon nanotips. The studies shed light on the controversies on the photoluminescence mechanisms of carbon-based amorphous films measured at different temperatures. The relevance of the results to the use of nitrogenated carbon nanotips in light-emitting optoelectronic devices is discussed.
Resumo:
Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.
Resumo:
The Ar/O2plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4′, 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.
Resumo:
The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm-1 besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.
Resumo:
The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.
Resumo:
The response of complex ionized gas systems to the presence of nonuniform distribution of charged grains is investigated using a kinetic model. Contrary to an existing view that the electron temperature inevitably increases in the grain-occupied region because of enhanced ionization to compensate for the electrons lost to the grains, it is shown that this happens only when the ionizing electric field increases in the electron depleted region. The results for two typical plasma systems suggest that when the ionizing electric field depends on the spatially averaged electron density, the electron temperature in the grain containing region can actually decrease.
Resumo:
Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm2. The atomic structure of the SiOCH films appears to be a mixture the amorphous SiO2-like and the partially polycrystalline SiC-like phases. Results of the infra-red spectroscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40±2 mW) photoluminescence (PL) has been studied at room temperatures in the visible (1.8 eV - 3.1 eV) subrange of photon spectrum. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 - 2.9 eV) are observed. Intensities of the both bands are changed monotonically with RF power, whereas the bandwidth of ∼0.1 eV remains almost invariable. It is likely that the above lines are dumped by the non-radiative recombination involving E1-like centres in the amorphous-nanocrystalline SiC-like phases. Such explanation of the PL intensity dependences on the RF power density is supported by results of experimental studies of defect states spectrum in bandgap of the SiOCH films.
Resumo:
The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.
Resumo:
In the Australian sugar industry, sugar cane is smashed into a straw like material by hammers before being squeezed between large rollers to extract the sugar juice. The straw like material is initially called prepared cane and then bagasse as it passes through successive roller milling units. The sugar cane materials are highly compressible, have high moisture content, are fibrous, and they resemble some peat soils in both appearance and mechanical behaviour. A promising avenue to improve the performance of milling units for increased throughput and juice extraction, and to reduce costs is by modelling of the crushing process. To achieve this, it is believed necessary that milling models should be able to reproduce measured bagasse behaviour. This investigation sought to measure the mechanical (compression, shear, and volume) behaviour of prepared cane and bagasse, to identify limitations in currently used material models, and to progress towards a material model that can predict bagasse behaviour adequately. Tests were carried out using a modified direct shear test equipment and procedure at most of the large range of pressures occurring in the crushing process. The investigation included an assessment of the performance of the direct shear test for measuring bagasse behaviour. The assessment was carried out using finite element modelling. It was shown that prepared cane and bagasse exhibited critical state behavior similar to that of soils and the magnitudes of material parameters were determined. The measurements were used to identify desirable features for a bagasse material model. It was shown that currently used material models had major limitations for reproducing bagasse behaviour. A model from the soil mechanics literature was modified and shown to achieve improved reproduction while using magnitudes of material parameters that better reflected the measured values. Finally, a typical three roller mill pressure feeder configuration was modelled. The predictions and limitations were assessed by comparison to measured data from a sugar factory.
Resumo:
Objectives: Children with type 1 diabetes mellitus (DM1) may be at increased risk of psychosocial and adjustment difficulties. We examined behavioral outcomes six months post-diagnosis in a group of children with newly diagnosed DM1. Methods: This study formed part of a larger longitudinal project examining pathophysiology and neuropsychological outcomes in diabetic patients with or without diabetic ketoacidosis (DKA). Participants were 61 children (mean age 11.8 years, SD 2.7 years) who presented with a new diagnosis of DM1 at the Royal Children’s Hospital, Melbourne. Twenty-three (11 female) presented in DKA and 38 (14 female) without DKA. Parents completed the behavior assessment system for children, second edition six months post-diagnosis. Results: There was a non-linear relationship between age and behavior. Internalising problems (i.e. anxiety depression, withdrawal) peaked in the transition from childhood to adolescence; children aged 10–13 years had elevated rates relative to the normal population (t = 2.55, P = 0.018). There was a non-significant trend for children under 10 to display internalising problems (P = 0.052), but rates were not elevated in children over 13 (P = 0.538). Externalising problems were not significantly elevated in any age group. Interestingly, children who presented in DKA were at lower risk of internalising problems than children without DKA (t = 3.83, P < 0.001). There was no effect of DKA on externalising behaviors. Conclusions: Children transitioning from childhood to adolescence are at significant risk for developing internalising problems such as anxiety and lowered mood after diagnosis of DM1. Somewhat counter-intuitively, parents of children presenting in DKA reported fewer internalising symptoms than parents of children without DKA. These results highlight the importance of monitoring and supporting psychosocial adjustment in newly diagnosed children even when they seem physically well.