224 resultados para Metallic matrix composites
Resumo:
Israeli Organised Crime (IOC) gained prominence in the 1990s for its involvement in the manufacturing and wholesale distribution of MDMA through traditional trafficking networks across Europe. Equipped with astute business acumen and an entrepreneurial spirit, IOC dominated MDMA trafficking in Europe for more than a decade and remains as a major participant in this drug market. The paper analyses the entrepreneurial activities of IOC within the context of the MDMA market in Europe between 1990 and 2005 using the Crime Business Analysis Matrix (CBAM) as proffered by Dean, et al (2010). The study is in two parts. Part A provides a review of the literature as it pertains to IOC and its involvement in the European drug market, while Part B provides a qualitative analysis of their criminal business practices and entrepreneurialism of IOC within this context.
Resumo:
Objective To explore the characteristics of regional distribution of cancer deaths in Shandong Province with the principle components analysis. Methods The principle components analysis with co-variance matrix for age-adjusted mortality rates and percentages of 20 types of cancer in 22 counties (cities) were carried out using SAS Software. Results Over 90% of the total information could be reflected by the top 3 principle components and the first principle component alone represented more than half of the overall regional variances. The first component mainly reflected the area differences of esophageal cancer. The second component mainly reflected the area differences of lung cancer, stomach cancer and liver cancer. The value of the first principal component scores showed a clear trend that the west areas possessed higher values and the east the lower values. Based on the top two components,the 22 counties (cities) could be divided into several geographical clusters. Conclusion The overall difference of regional distribution of cancers in Shandong is dominated by several major cancers including esophageal cancer, lung cancer, stomach cancer and liver cancer. Among them,esophageal cancer makes the largest contribution. If the range of counties (cities) analyzed could be further widened, the characteristics of regional distribution of cancer mortality would be better examined. Abstract in Chinese 目的 利用主成分分析探讨山东省恶性肿瘤死亡的地区分布特征. 方法 利用SAS软件对山东省22个县市区2004~2006午的20种恶性肿瘤标化死亡率和构成比分别进行协方差矩阵主成分分析. 结果 前3个主成分就反映了总体差异90%以上的信息,其中仅第1主成分就提供了总体差异一半以上的信息.第1主成分主要反映了食管癌的地区差异,第2主成分主要反映肺癌的地区差异,兼顾胃癌和肝癌.各地区第1主成分得分呈现西高东低的趋势,根据第1和第2主成分可以将调查地区分为若干类别,表现为明显的地理聚集性. 结论 山东省各地区恶性肿瘤死亡的总体差异主要取决于少数高发肿瘤,包括食管癌、肺癌、胃癌、肝癌等,其中以食管癌地位最为突出.如能进一步扩大分析范围,可更好地查明恶性肿瘤死亡的地区特征.
Resumo:
Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.
Resumo:
Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.
Resumo:
Purpose: Matrix metalloproteinases (MMPs) degrade extracellular proteins and facilitate tumor growth, invasion, metastasis, and angiogenesis. This trial was undertaken to determine the effect of prinomastat, an inhibitor of selected MMPs, on the survival of patients with advanced non-small-cell lung cancer (NSCLC), when given in combination with gemcitabine-cisplatin chemotherapy. Patients and Methods: Chemotherapy-naive patients were randomly assigned to receive prinomastat 15 mg or placebo twice daily orally continuously, in combination with gemcitabine 1,250 mg/m2 days 1 and 8 plus cisplatin 75 mg/m2 day 1, every 21 days for up to six cycles. The planned sample size was 420 patients. Results: Study results at an interim analysis and lack of efficacy in another phase III trial prompted early closure of this study. There were 362 patients randomized (181 on prinomastat and 181 on placebo). One hundred thirty-four patients had stage IIIB disease with T4 primary tumor, 193 had stage IV disease, and 34 had recurrent disease (one enrolled patient was ineligible with stage IIIA disease). Overall response rates for the two treatment arms were similar (27% for prinomastat v 26% for placebo; P = .81). There was no difference in overall survival or time to progression; for prinomastat versus placebo patients, the median overall survival times were 11.5 versus 10.8 months (P = .82), 1-year survival rates were 43% v 38% (P = .45), and progression-free survival times were 6.1 v 5.5 months (P = .11), respectively. The toxicities of prinomastat were arthralgia, stiffness, and joint swelling. Treatment interruption was required in 38% of prinomastat patients and 12% of placebo patients. Conclusion: Prinomastat does not improve the outcome of chemotherapy in advanced NSCLC. © 2005 by American Society of Clinical Oncology.
Resumo:
The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but they have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in gel-MA based hydrogels, and show that with the incorporation of small quantities of photo-crosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesised ECM throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 96 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.
Resumo:
Matrix metalloproteinases (MMPs), in particular the gelatinases (MMP-2 and -9), play a significant role in tumour invasion and angiogenesis. The expression and activities of MMPs have not been characterised in malignant mesothelioma (MM) tumour samples. In a prospective study, gelatinase activity was evaluated in homogenised supernatants of snap frozen MM (n = 35), inflamed pleura (IP, n = 12) and uninflammed pleura (UP, n = 14) tissue specimens by semiquantitative gelatin zymography. Matrix metalloproteinases were correlated with clinicopathological factors and with survival using Kaplan-Meier and Cox proportional hazard models. In MM, pro- and active MMP-2 levels were significantly greater than for MMP-9 (P = 0.006, P<0.001). Active MMP-2 was significantly greater in MM than in UP (P=0.04). MMP-2 activity was equivalent between IP and MM, but both pro- and active MMP-9 activities were greater in IP (P=0.02, P=0.009). While there were trends towards poor survival with increasing total and pro-MMP-2 activity (P=0.08) in univariate analysis, they were both independent poor prognostic factors in multivariate analysis in conjunction with weight loss (pro-MMP-2 P = 0.03, total MMP-2 P = 0.04). Total and pro-MMP-2 also contributed to the Cancer and Leukemia Group B prognostic groups. MMP-9 activities were not prognostic. Matrix metalloproteinases, and in particular MMP-2, the most abundant gelatinase, may play an important role in MM tumour growth and metastasis. Agents that reduce MMP synthesis and/or activity may have a role to play in the management of MM. © 2003 Cancer Research UK.
Resumo:
Over the last decade advanced composite materials, like carbon fibre reinforced polymer (CFRP), have increasingly been used in civil engineering infrastructure. The benefits of advanced composites are rapidly becoming evident. This paper focuses on the comparative performance of steel and concrete members retrofitted by carbon fibre reinforced polymers. The objective of this work is a systematic assessment and evaluation of the performance of CFRP for both the concrete and steel members available in the technical literature. Existing empirical and analytical models were studied. Comparison is made with respect to failure mode, bond characteristics, fatigue behaviour, durability, corrosion, load carrying capacity and force transfer. It is concluded that empirical expressions for the concrete-CFRP composite are not readily suited for direct use in the steel-CFRP composite. This paper identifies some of the major issues that need further investigation.
Resumo:
Black et al. (2004) identified a systematic difference between LA–ICP–MS and TIMS measurements of 206Pb/238U in zircons, which they correlated with the incompatible trace element content of the zircon. We show that the offset between the LA–ICP–MS and TIMS measured 206Pb/238U correlates more strongly with the total radiogenic Pb than with any incompatible trace element. This suggests that the cause of the 206Pb/238U offset is related to differences in the radiation damage (alpha dose) between the reference and unknowns. We test this hypothesis in two ways. First, we show that there is a strong correlation between the difference in the LA–ICP–MS and TIMS measured 206Pb/238U and the difference in the alpha dose received by unknown and reference zircons. The LA–ICP–MS ages for the zircons we have dated can be as much as 5.1% younger than their TIMS age to 2.1% older, depending on whether the unknown or reference received the higher alpha dose. Second, we show that by annealing both reference and unknown zircons at 850 °C for 48 h in air we can eliminate the alpha-dose-induced differences in measured 206Pb/238U. This was achieved by analyzing six reference zircons a minimum of 16 times in two round robin experiments: the first consisting of unannealed zircons and the second of annealed grains. The maximum offset between the LA–ICP–MS and TIMS measured 206Pb/238U for the unannealed zircons was 2.3%, which reduced to 0.5% for the annealed grains, as predicted by within-session precision based on counting statistics. Annealing unknown zircons and references to the same state prior to analysis holds the promise of reducing the 3% external error for the measurement of 206Pb/238U of zircon by LA–ICP–MS, indicated by Klötzli et al. (2009), to better than 1%, but more analyses of annealed zircons by other laboratories are required to evaluate the true potential of the annealing method.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Significance: Chronic wounds represent a major burden on global healthcare systems and reduce the quality of life of those affected. Significant advances have been made in our understanding of the biochemistry of wound healing progression. However, knowledge regarding the specific molecular processes influencing chronic wound formation and persistence remains limited. Recent Advances: Generally, healing of acute wounds begins with hemostasis and the deposition of a plasma-derived provisional matrix into the wound. The deposition of plasma matrix proteins is known to occur around the microvasculature of the lower limb as a result of venous insufficiency. This appears to alter limb cutaneous tissue physiology and consequently drives the tissue into a ‘preconditioned’ state that negatively influences the response to wounding. Critical Issues: Processes, such as oxygen and nutrient suppression, edema, inflammatory cell trapping/extravasation, diffuse inflammation, and tissue necrosis are thought to contribute to the advent of a chronic wound. Healing of the wound then becomes difficult in the context of an internally injured limb. Thus, interventions and therapies for promoting healing of the limb is a growing area of interest. For venous ulcers, treatment using compression bandaging encourages venous return and improves healing processes within the limb, critically however, once treatment concludes ulcers often reoccur. Future Directions: Improved understanding of the composition and role of pericapillary matrix deposits in facilitating internal limb injury and subsequent development of chronic wounds will be critical for informing and enhancing current best practice therapies and preventative action in the wound care field.
Resumo:
Welcome to the Teacher evidence matrix. This matrix is designed for highly qualified discipline experts to evaluate their teaching in a systematic manner. The primary purpose of the Teacher evidence matrix is to provide a tool that an academic staff member at university can annually review their teaching. The annual review will result in you being ready for performance, planning and review; promotion; awards; or employment application. This tool is designed for individual use and will lead to an action plan for implementation.
Resumo:
Hard-to-heal leg ulcers are a major cause of morbidity in the elderly population. Despite improvements in wound care, some wounds will not heal and they present a significant challenge for patients and health care providers. A multi-centre cohort study was conducted to evaluate the effectiveness and safety of a synthetic, extracellular matrix protein as an adjunct to standard care in the treatment of hard-to-heal venous or mixed leg ulcers. Primary effectiveness criteria were (i) reduction in wound size evaluated by percentage change in wound area and (ii) healing assessed by number of patients healed by end of the 12 week study. Pain reduction was assessed as a secondary effectiveness criteria using VAS. A total of 45 patients completed the study and no difference was observed between cohorts for treatment frequency. Healing was achieved in 35·6% and wound size decreased in 93·3% of patients. Median wound area percentage reduction was 70·8%. Over 50% of patients reported pain on first visit and 87·0% of these reported no pain at the end of the study. Median time to first reporting of no pain was 14 days after treatment initiation. The authors consider the extracellular synthetic matrix protein an effective and safe adjunct to standard care in the treatment of hard-to-heal leg ulcers.
Resumo:
Objective The 2010–2011 Queensland floods resulted in the most deaths from a single flood event in Australia since 1916. This article analyses the information on these deaths for comparison with those from previous floods in modern Australia in an attempt to identify factors that have contributed to those deaths. Haddon's Matrix, originally designed for prevention of road trauma, offers a framework for understanding the interplay between contributing factors and helps facilitate a clearer understanding of the varied strategies required to ensure people's safety for particular flood types. Methods Public reports and flood relevant literature were searched using key words ‘flood’, ‘fatality’, ‘mortality’, ‘death’, ‘injury’ and ‘victim’ through Google Scholar, PubMed, ProQuest and EBSCO. Data relating to reported deaths during the 2010–2011 Queensland floods, and relevant data of previous Australian flood fatality (1997–2009) were collected from these available sources. These sources were also used to identify contributing factors. Results There were 33 deaths directly attributed to the event, of which 54.5% were swept away in a flash flood on 10 January 2011. A further 15.1% of fatalities were caused by inappropriate behaviours. This is different to floods in modern Australia where over 90% of deaths are related to the choices made by individuals. There is no single reason why people drown in floods, but rather a complex interplay of factors. Conclusions The present study and its integration of research findings and conceptual frameworks might assist governments and communities to develop policies and strategies to prevent flood injury and fatalities.
Resumo:
Bone defect treatments can be augmented by mesenchymal stem cell (MSC) based therapies. MSC interaction with the extracellular matrix (ECM) of the surrounding tissue regulates their functional behavior. Understanding of these specific regulatory mechanisms is essential for the therapeutic stimulation of MSC in vivo. However, these interactions are presently only partially understood. This study examined in parallel, for the first time, the effects on the functional behavior of MSCs of 13 ECM components from bone, cartilage and hematoma compared to a control protein, and hence draws conclusions for rational biomaterial design. ECM components specifically modulated MSC adhesion, migration, proliferation, and osteogenic differentiation, for example, fibronectin facilitated migration, adhesion, and proliferation, but not osteogenic differentiation, whereas fibrinogen enhanced adhesion and proliferation, but not migration. Subsequently, the integrin expression pattern of MSCs was determined and related to the cell behavior on specific ECM components. Finally, on this basis, peptide sequences are reported for the potential stimulation of MSC functions. Based on the results of this study, ECM component coatings could be designed to specifically guide cell functions.