339 resultados para Fractional-order calculus
Resumo:
Biased estimation has the advantage of reducing the mean squared error (MSE) of an estimator. The question of interest is how biased estimation affects model selection. In this paper, we introduce biased estimation to a range of model selection criteria. Specifically, we analyze the performance of the minimum description length (MDL) criterion based on biased and unbiased estimation and compare it against modern model selection criteria such as Kay's conditional model order estimator (CME), the bootstrap and the more recently proposed hook-and-loop resampling based model selection. The advantages and limitations of the considered techniques are discussed. The results indicate that, in some cases, biased estimators can slightly improve the selection of the correct model. We also give an example for which the CME with an unbiased estimator fails, but could regain its power when a biased estimator is used.
Resumo:
This article uses critical discourse analysis to analyse material shifts in the political economy of communications. It examines texts of major corporations to describe four key changes in political economy: (1) the separation of ownership from control; (2) the separation of business from industry; (3) the separation of accountability from responsibility; and (4) the subjugation of ‘going concerns’ by overriding concerns. The authors argue that this amounts to a political economic shift from traditional concepts of ‘capitalism’ to a new ‘corporatism’ in which the relationships between public and private, state and individual interests have become redefined and obscured through new discourse strategies. They conclude that the present financial and regulatory ‘crisis’ cannot be adequately resolved without a new analytic framework for examining the relationships between corporation, discourse and political economy.
Resumo:
Purpose: Poor image quality in the peripheral field may lead to myopia. Most studies measuring the higher order aberrations in the periphery have been restricted to the horizontal visual field. The purpose of this study was to measure higher order monochromatic aberrations across the central 42º horizontal x 32º vertical visual fields in myopes and emmetropes. ---------- Methods: We recruited 5 young emmetropes with spherical equivalent refractions +0.17 ± 0.45D and 5 young myopes with spherical equivalent refractions -3.9 ± 2.09D. Measurements were taken with a modified COAS-HD Hartmann-Shack aberrometer (Wavefront Sciences Inc). Measurements were taken while the subjects looked at 38 points arranged in a 7 x 6 matrix (excluding four corner points) through a beam splitter held between the instrument and the eye. A combination of the instrument’s software and our own software was used to estimate OSA Zernike coefficients for 5mm pupil diameter at 555nm for each point. The software took into account the elliptical shape of the off-axis pupil. Nasal and superior fields were taken to have positive x and y signs, respectively. ---------- Results: The total higher order RMS (HORMS) was similar on-axis for emmetropes (0.16 ± 0.02 μm) and myopes (0.17 ± 0.02 μm). There was no common pattern for HORMS for emmetropes across the visual field where as 4 out of 5 myopes showed a linear increase in HORMS in all directions away from the minimum. For all subjects, vertical and horizontal comas showed linear changes across the visual field. The mean rate of change of vertical coma across the vertical meridian was significantly lower (p = 0.008) for emmetropes (-0.005 ± 0.002 μm/deg) than for myopes (-0.013 ± 0.004 μm/deg). The mean rate of change of horizontal coma across the horizontal meridian was lower (p = 0.07) for emmetropes (-0.006 ± 0.003 μm/deg) than myopes (-0.011 ± 0.004 μm/deg). ---------- Conclusion: We have found differences in patterns of higher order aberrations across the visual fields of emmetropes and myopes, with myopes showing the greater rates of change of horizontal and vertical coma.
Resumo:
Not all companies in Australia are amenable to a winding up order pursuant to the Corporations Act 2001 (Cth). The Supreme Court of New South Wales has previously dealt with such winding up applications by apparently focusing on the inherent jurisdiction of the court to consider whether the court has jurisdiction to firstly consider the winding up application. This article proposes an original alternative paradigm: the plenary power provided to the court by s 23 of the Supreme Court Act 1970 (NSW) can be utilised to initially attract the jurisdiction of the court and subsequently the inherent jurisdiction specifically utilising the equitable “just and equitable” ground is available to the court to consider and make such a winding up order if appropriate. Variation of such a paradigm may also be available to the court when considering the inherent jurisdiction in relation to corporation matters more generally.
Resumo:
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.