149 resultados para Ford automobile
Resumo:
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...
Resumo:
In this paper new online adaptive hidden Markov model (HMM) state estimation schemes are developed, based on extended least squares (ELS) concepts and recursive prediction error (RPE) methods. The best of the new schemes exploit the idempotent nature of Markov chains and work with a least squares prediction error index, using a posterior estimates, more suited to Markov models then traditionally used in identification of linear systems.
Resumo:
This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.
Resumo:
This paper investigates demodulation of differentially phase modulated signals DPMS using optimal HMM filters. The optimal HMM filter presented in the paper is computationally of order N3 per time instant, where N is the number of message symbols. Previously, optimal HMM filters have been of computational order N4 per time instant. Also, suboptimal HMM filters have be proposed of computation order N2 per time instant. The approach presented in this paper uses two coupled HMM filters and exploits knowledge of ...
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMMs). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters.
Resumo:
A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O(100) calculations per data sample.
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
This paper proposes new techniques for aircraft shape estimation, passive ranging, and shape-adaptive hidden Markov model filtering which are suitable for a monocular vision-based non-cooperative collision avoidance system. Vision-based passive ranging is an important missing technology that could play a significant role in resolving the sense-and-avoid problem in un-manned aerial vehicles (UAVs); a barrier hindering the wider adoption of UAVs for civilian applications. The feasibility of the pro- posed shape estimation, passive ranging and shape-adaptive filtering techniques is evaluated on flight test data.
Resumo:
This thesis examines the question why the automotive mode and the large technological system it creates, continues to dominate urban transport systems despite the availability of more cost-efficient alternatives. A number of theoretical insights are developed into the way these losses evolve from path dependent growth, and lead to market failure and lock-in. The important role of asymmetries of influence is highlighted. A survey of commuters in Jakarta Indonesia is used to provide a measure of transport modal lock-in (TML) in a developing country conurbation. A discrete choice experiment is used to provide evidence for the thesis central hypothesis that in such conurbations there is a high level of commuter awareness of the negative externalities generated by TML which can produce a strong level of support for its reversal. Why TML nevertheless remains a strong and durable feature of the transport system is examined with reference to the role of asymmetries of influence.
Resumo:
Graduated driver licensing (GDL) aims to gradually increase the exposure of new drivers to more complex driving situations and typically consists of learner, provisional and open licence phases. The first phase, the learner licence, is designed to allow novice drivers to obtain practical driving experience in lower risk situations. The learner licence can delay licensure, encourage novice drivers to learn under supervision, mandate the number of hours of practice required to progress to the next phase and encourage parental involvement. The second phase, the provisional licence, establishes various driving restrictions and thereby reduces exposure to situations of higher risk, such as driving at night, with passengers or after drinking alcohol. Parental involvement with a GDL system appears essential in helping novices obtain sufficient practice and in enforcing compliance with restrictions once the new driver obtains a provisional licence. Given the significant number of young drivers involved in crashes within Oman, GDL is one countermeasure that may be beneficial in reducing crash risk and involvement for this group.
Resumo:
Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.
Resumo:
Objective: Individuals with chronic whiplash-associated disorders (WADs) often note driving as a difficult task. This study’s aims were to (1) compare, while driving, neck motor performance, mental effort, and fatigue in individuals with chronic WAD against healthy controls and (2) investigate the relationships of these variables and neck pain to self-reported driving difficulty in the WAD group. Design: This study involved 14 participants in each group (WAD and control). Measures included self-reported driving difficulty and measures of neck pain intensity, overall fatigue, mental effort, and neck motor performance (head rotation and upper trapezius activity) while driving a simulator. Results: The WAD group had greater absolute path of head rotation in a simulated city area and used greater mental effort (P = 0.04), but there were no differences in other measures while driving compared with the controls (all P Q 0.05). Self-reported driving difficulty correlated moderately with neck pain intensity, fatigue level, and maximum velocity of head rotation while driving in the WAD group (all P G 0.05). Conclusions: Individuals with chronic WAD do not seem to have impaired neck motor performance while driving yet use greater mental effort. Neck pain, fatigue, and maximum head rotation velocity could be potential contributors to self-reported driving difficulty in this group.
Resumo:
Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.
Resumo:
This paper addresses less recognised factors which influence the diffusion of a particular technology. While an innovation’s attributes and performance are paramount, many fail because of external factors which favour an alternative. This paper, with theoretic input from diffusion, lock-in and path-dependency, presents a qualitative study of external factors that influenced the evolution of transportation in USA. This historical account reveals how one technology and its emergent systems become dominant while other choices are overridden by socio-political, economic and technological interests which include not just the manufacturing and service industries associated with the automobile but also government and market stakeholders. Termed here as a large socio-economic regime (LSER),its power in ensuring lock-in and continued path-dependency is shown to pass through three stages, weakening eventually as awareness improves. The study extends to transport trends in China, Korea, Indonesia and Malaysia and they all show the dominant role of an LSER. As transportation policy is increasingly accountable to address both demand and environmental concerns and innovators search for solutions, this paper presents important knowledge for innovators, marketers and policy makers for commercial and societal reasons, especially when negative externalities associated with an incumbent transportation technology may lead to market failure.