191 resultados para Experimental data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Controlling the electrical resistance of granular thin films is of great importance for many applications, yet a full understanding of electron transport in such films remains a major challenge. We have studied experimentally and by model calculations the temperature dependence of the electrical resistance of ultrathin gold films at temperatures between 2 K and 300 K. Using sputter deposition, the film morphology was varied from a discontinuous film of weakly coupled meandering islands to a continuous film of strongly coupled coalesced islands. In the weak-coupling regime, we compare the regular island array model, the cotunneling model, and the conduction percolation model with our experimental data. We show that the tunnel barriers and the Coulomb blockade energies are important at low temperatures and that the thermal expansion of the substrate and the island resistance affect the resistance at high temperatures. At low temperatures our experimental data show evidence for a transition from electron cotunneling to sequential tunneling but the data can also be interpreted in terms of conduction percolation. The resistivity and temperature coefficient of resistance of the meandering gold islands are found to resemble those of gold nanowires. We derive a simple expression for the temperature at which the resistance changes from non-metal-like behavior into metal-like behavior. In the case of strong island coupling, the total resistance is solely determined by the Ohmic island resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural stability, electronic, and optical properties of InN under high pressure are studied using the first-principles calculations. The lattice constants and electronic band structure are found consistent with the available experimental and theoretical values. The pressure of the wurtzite-to-rocksalt structural transition is 13.4 GPa, which is in an excellent agreement with the most recent experimental values. The optical characteristics reproduce the experimental data thus justifying the feasibility of our theoretical predictions of the optical properties of InN at high pressures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible chemical vapor deposition of ultralong carbon microcoils using acetylene precursor in the temperature range 700-750 °C. Scanning electron microscopy analysis reveals that the carbon microcoils have a unique double-helix structure and a uniform circular cross-section. It is shown that double-helix carbon microcoils have outstanding superelastic properties. The microcoils can be extended up to 10-20 times of their original coil length, and quickly recover the original state after releasing the force. A mechanical model of the carbon coils with a large spring index is developed to describe their extension and contraction. Given the initial coil parameters, this mechanical model can successfully account for the geometric nonlinearity of the spring constants for carbon micro- and nanocoils, and is found in a good agreement with the experimental data in the whole stretching process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication. © 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (≤1000 K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model describing the plasma-assisted growth of carbon nanofibres (CNFs) that accounts for the nanostructure heating by ion and etching gas fluxes from the plasma is developed. Using the model, it is shown that fluxes from the plasma environment can substantially increase the temperature of the catalyst nanoparticle located on the top of the CNF with respect to the substrate temperature. The difference between the catalyst and the substrate temperatures depends on the substrate width, the length of the CNF, the neutral gas density and temperature as well as the densities of the ions and atoms of the etching gas. In addition to the heating of the nanostructure, the ions and etching gas atoms from the ionized gas environment also strongly affect the CNF growth rates. Due to ion bombardment, the CNF growth rates in plasma enhanced chemical vapour deposition may be much higher than the rates in similar neutral gas-based thermal processes. The CNF growth model, which accounts for the nanostructure heating by the plasma-generated species, provides the growth rates that are in better agreement with the available experimental data on CNF growth than the models in which the heating effects are ignored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper presents an investigation of self-organizational and -assembly processes of nanostructure growth on surfaces exposed to low-temperature plasmas. We have considered three main growth stages-initial, or sub-monolayer growth stage, separate nanostructure growth stage, and array growth stages with the characteristic sizes of several nm, several tens of nm, and several hundreds of nm, respectively, and have demonstrated, by the experimental data and hybrid multiscale numerical simulations, that the plasma parameters can strongly influence the surface processes and hence the kinetics of self-organization and -assembly. Our results show that plasma-controlled self-organization is a promising way to assemble large regular arrays of nanostructures. © 2008 IUPAC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The equilibrium profiles of the plasma parameters of large-area if discharges in a finite-length metal-shielded dielectric cylinder are computed using a two-dimensional fluid code. The rf power is coupled to the plasma through edge-localized surface waves traveling in the azimuthal direction along the plasma edge. It is shown that self-consistent accounting for axial plasma diffusion and radial nonuniformity of the electron temperature can explain the frequently reported deviations of experimentally measured radial density profiles from that of the conventional linear diffusion models. The simulation results are in a good agreement with existing experimental data obtained from surface-wave sustained large-diameter plasmas. © 2002 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The controlled growth of ultra-small Ge/Si quantum dot (QD) nuclei (≈1 nm) suitable for the synthesis of uniform nanopatterns with high surface coverage, is simulated using atom-only and size non-uniform cluster fluxes. It is found that seed nuclei of more uniform sizes are formed when clusters of non-uniform size are deposited. This counter-intuitive result is explained via adatom-nanocluster interactions on Si(100) surfaces. Our results are supported by experimental data on the geometric characteristics of QD patterns synthesized by nanocluster deposition. This is followed by a description of the role of plasmas as non-uniform cluster sources and the impact on surface dynamics. The technique challenges conventional growth modes and is promising for deterministic synthesis of nanodot arrays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiogenesis represents a form of neovascularisation of exceptional importance in numerous pathological conditions including stroke. In this context it is directly related to neuroregeneration which is seen in close proximity. However, numerous experimental data have been drawn from studies that have ignored the age criterion. This is extremely important as angiogenesis is different in young versus old subjects. Extrapolating data obtained from studies performed in young subjects or "in vitro" to old-age patients could lead to inexact conclusions since the dynamics of angiogenesis is age-dependent.The current review covers the key features of brain senescence including morphological and functional changes related to the brain parenchyma, its vascular network and blood flow which could possibly influence the process of angiogenesis. This is followed by a description of post-stroke angiogenesis and its relationship to neuroregeneration and its modulation by vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF 1), the most important factors active in old brain after ischemic injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of vapor layers around an electrode immersed in a conducting liquid prior to generation of a plasma discharge is studied using numerical simulations. This study quantifies and explains the effects of the electrode geometry and applied voltage pulses, as well as the electrical and thermal properties of the liquids on the temporal dynamics of the pre-breakdown conditions in the vapor layer. This model agrees well with experimental data, in particular, the time needed to reach the electrical breakdown threshold. Because the time needed for discharge ignition can be accurately predicted from the model, the parameters such as the pulse shape, voltage, and electrode configuration can be optimized under different liquid conditions, which facilitates a faster and more energy-efficient plasma generation.