240 resultados para Equilibrium Problem
Resumo:
Background Cancer can be a distressing experience for cancer patients and carers, impacting on psychological, social, physical and spiritual functioning. However, health professionals often fail to detect distress in their patients due to time constraints and a lack of experience. Also, with the focus on the patient, carer needs are often overlooked. This study investigated the acceptability of brief distress screening with the Distress Thermometer (DT) and Problem List (PL) to operators of a community-based telephone helpline, as well as to cancer patients and carers calling the service. Methods Operators (n = 18) monitored usage of the DT and PL with callers (cancer patients/carers, >18 years, and English-speaking) from September-December 2006 (n = 666). The DT is a single item, 11-point scale to rate level of distress. The associated PL identifies the cause of distress. Results The DT and PL were used on 90% of eligible callers, most providing valid responses. Benefits included having an objective, structured and consistent means for distress screening and triage to supportive care services. Reported challenges included apparent inappropriateness of the tools due to the nature of the call or level of caller distress, the DT numeric scale, and the level of operator training. Conclusions We observed positive outcomes to using the DT and PL, although operators reported some challenges. Overcoming these challenges may improve distress screening particularly by less experienced clinicians, and further development of the PL items and DT scale may assist with administration. The DT and PL allow clinicians to direct/prioritise interventions or referrals, although ongoing training and support is critical in distress screening.
Resumo:
Aim: Up to 60% of older medical patients are malnourished with further decline during hospital stay. There is limited evidence for effective nutrition intervention. Staff focus groups were conducted to improve understanding of potential contextual and cultural barriers to feeding older adults in hospital. Methods: Three focus groups involved 22 staff working on the acute medical wards of a large tertiary teaching hospital. Staff disciplines were nursing, dietetics, speech pathology, occupational therapy, physiotherapy, pharmacy. A semistructured topic guide was used by the same facilitator to prompt discussions on hospital nutrition care including barriers. Focus groups were tape-recorded, transcribed and analysed thematically. Results: All staff recognised malnutrition to be an important problem in older patients during hospital stay and identified patient-level barriers to nutrition care such as non-compliance to feeding plans and hospital-level barriers including nursing staff shortages. Differences between disciplines revealed a lack of a coordinated approach, including poor knowledge of nutrition care processes, poor interdisciplinary communication, and a lack of a sense of shared responsibility/coordinated approach to nutrition care. All staff talked about competing activities at meal times and felt disempowered to prioritise nutrition in the acute medical setting. Staff agreed education and ‘extra hands’ would address most barriers but did not consider organisational change. Conclusions: Redesigning the model of care to reprioritise meal-time activities and redefine multidisciplinary roles and responsibilities would support coordinated nutrition care. However, effectiveness may also depend on hospitalwide leadership and support to empower staff and increase accountability within a team-led approach.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
In 1984 the School of Architecture and Built Environment within the University of Newcastle, Australia introduced an integrated program based on real design projects and using Integrated Problem Based Learning (IPBL) as the teaching method. Since 1984 there have been multiple changes arising from the expectations of the architectural fraternity, enrolling students, lecturers, available facilities, accreditation authorities and many others. These challenges have been successfully accommodated whilst maintaining the original purposes and principles of IPBL. The Architecture program has a combined two-degree structure consisting of a first degree, Bachelor of Science (Architecture), followed by a second degree, Bachelor of Architecture. The program is designed to simulate the problem-solving situations that face a working architect in every day practice. This paper will present the degree structure where each student is enrolled in a single course per semester incorporating design integration and study areas in design studies, professional studies, historical studies, technical studies, environmental studies and communication skills. Each year the design problems increase in complexity and duration set around an annual theme. With 20 years of successful delivery of any program there are highlights and challenges along the way and this paper will discuss some of the successes and barriers experienced within the School of Architecture and Built Environment in delivering IPBL. In addition, the reflective process investigates the currency of IPBL as an appropriate vehicle for delivering the curriculum in 2004 and any additional administrative or staff considerations required to enhance the continuing application of IPBL.
Resumo:
For decades there have been two young driver concepts: the „young driver problem‟ where the driver cohort represents a key problem for road safety; and the „problem young driver‟ where a sub-sample of drivers represents the greatest road safety problem. Given difficulties associated with identifying and then modifying the behaviour of the latter group, broad countermeasures such as graduated driver licensing (GDL) have generally been relied upon to address the young driver problem. GDL evaluations reveal general road safety benefits for young drivers, yet they continue to be overrepresented in fatality and injury statistics. Therefore it is timely for researchers revisit the problem young driver concept to assess its potential countermeasure implications. Personal characteristics, behaviours and attitudes of 378 Queensland novice drivers aged 17-25 years were explored during their pre-, Learner and Provisional 1 (intermediate) licence as part of a larger longitudinal research project. Self-reported risky driving was measured by the Behaviour of Young Novice Drivers Scale (BYNDS), and five subscale scores were used to cluster the drivers into three groups (high risk n = 49, medium risk n = 163, low risk n = 166). High risk „problem young‟ drivers were characterised by self-reported pre-Licence driving, unsupervised Learner driving, and speeding, driving errors, risky driving exposure, crash involvement, and offence detection during the Provisional period. Medium risk drivers were also characterised by more risky road use behaviours than the low risk group. Interestingly problem young drivers appear to have some insight into their high-risk driving, and they report significantly greater intentions to bend road rules in future driving. The results suggest that in addition to broad countermeasures such as GDL which target the young driver problem, tailored intervention efforts may need to target problem young drivers. Driving behaviours and crash-involvement could be used to identify these drivers as pre-intervention screening measures.
Resumo:
Problem-based learning (PBL) has been used successfully in disciplines such as medicine, nursing, law and engineering. However a review of the literature shows that there has been little use of this approach to learning in accounting. This paper extends the research in accounting education by reporting the findings of a case study of the development and implementation of PBL at the Queensland University of Technology (QUT) in a new Accountancy Capstone unit that began in 2006. The fundamentals of the PBL approach were adhered to. However, one of the essential elements of the approach adopted was to highlight the importance of questioning as a means of gathering the necessary information upon which decisions are made. This approach can be contrasted with the typical ‘give all the facts’ case studies that are commonly used. Another feature was that students worked together in the same group for an entire semester (similar to how teams in the workplace operate) so there was an intended focus on teamwork in solving unstructured, real-world accounting problems presented to students. Based on quantitative and qualitative data collected from student questionnaires over seven semesters, it was found that students perceived PBL to be effective, especially in terms of developing the skills of questioning, teamwork, and problem solving. The effectiveness of questioning is very important as this is a skill that is rarely the focus of development in accounting education. The successful implementation of PBL in accounting through ‘learning by doing’ could be the catalyst for change to bring about better learning outcomes for accounting graduates.
Resumo:
The purpose of this paper is to analyse the complex nature of practice within Artistic research. This will be done by considering practice through the lens of Bourdieu’s conceptualisation of practice. The focus of the paper is on developing an understanding of practice-led approaches to research and how these are framed by what Coessens et al. (2009) call the artistic turn in research. The paper begins with a brief introduction to the nature of practice and then continues on to discuss the broader field of artistic research, describing the environment which has shaped its evolution and foregrounding several of its key dispositions. The paper aims to not simply describe existing methodology but to rethink what is meant by artistic research and practice-led strategies.
Resumo:
Women are underrepresented in science, technology, engineering and mathematics (STEM) areas in university settings; however this may be the result of attitude rather than aptitude. There is widespread agreement that quantitative problem-solving is essential for graduate competence and preparedness in science and other STEM subjects. The research question addresses the identities and transformative experiences (experiential, perception, & motivation) of both male and female university science students in quantitative problem solving. This study used surveys to investigate first-year university students’ (231 females and 198 males) perceptions of their quantitative problem solving. Stata (statistical analysis package version 11) analysed gender differences in quantitative problem solving using descriptive and inferential statistics. Males perceived themselves with a higher mathematics identity than females. Results showed that there was statistical significance (p<0.05) between the genders on 21 of the 30 survey items associated with transformative experiences. Males appeared to have a willingness to be involved in quantitative problem solving outside their science coursework requirements. Positive attitudes towards STEM-type subjects may need to be nurtured in females before arriving in the university setting (e.g., high school or earlier). Females also need equitable STEM education opportunities such as conversations or activities outside school with family and friends to develop more positive attitudes in these fields.
Resumo:
Universities often struggle to satisfy students’ need for feedback. This is an area where student satisfaction with courses of study can be low. Yet it is clear that one of the properties of good teaching is giving the highest quality feedback on student work. The term ‘feedback’ though is most commonly associated with summative assessment given by a teacher after work is completed. The student can often be a passive participant in the process. This paper looks at the implementation of a web based interactive scenario completed by students prior to summative assessment. It requires students to participate actively to develop and improve their legal problem solving skills. Traditional delivery of legal education focuses on print and an instructor who conveys the meaning of the written word to students. Today, mixed modes of teaching are often preferred and they can provide enhanced opportunities for feeding forward with greater emphasis on what students do. Web based activities allow for flexible delivery; they are accessible off campus, at a time that suits the student and may be completed by students at their own pace. This paper reports on an online interactive activity which provides valuable formative feedback necessary to allow for successful completion of a final problem solving assignment. It focuses on how the online activity feeds forward and contributes to the development of legal problem solving skills. Introduction to Law is a unit designed and introduced for completion by undergraduate students from faculties other than law but is focused most particularly on students enrolled in the Bachelor of Entertainment Industries degree, a joint initiative of the faculties of Creative Industries, Business and Law at the Queensland University of Technology in Australia. The final (and major) assessment for the unit is an assignment requiring students to explain the legal consequences of particular scenarios. A number of cost effective web based interactive scenarios have been developed to support the unit’s classroom activities. The tool commences with instruction on problem solving method. Students then view the stimulus which is a narrative produced in the form of a music video clip. A series of questions are posed which guide students through the process and they can compare their responses with sample answers provided. The activity clarifies the problem solving method and expectations for the summative assessment and allows students to practise the skill. The paper reports on the approach to teaching and learning taken in the unit including the design process and implementation of the activity. It includes an evaluation of the activity with respect to its effectiveness as a tool to feed forward and reflects on the implications for the teaching of law in higher education.
Resumo:
Brief interventions are effective for problem drinking and reductions are known to occur in association with screening and assessment. The present study sought to assess, among participants (N=202) in a clinical trial, how much change occurred between baseline assessment and a one-session brief intervention (S1), and the predictors of early change. The primary focus was on changes in the Beck Depression Inventory Fast Screen scores and alcohol consumption (standard drinks per week) prior to random allocation to nine further sessions addressing either depression, alcohol, or both problems. There were large and clinically significant reductions between baseline and S1, with the strongest predictors being baseline scores in the relevant domain and change in the other domain. Client engagement was also predictive of early depression changes. Monitoring progress in both domains from first contact, and provision of empathic care, followed by brief intervention appear to be useful for this high prevalence comorbidity.
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.