225 resultados para Dielectric Behavior
Resumo:
Recently, we defined a new syndromic form of X-linked mental retardation in a 4-generation family with a unique clinical phenotype characterized by mild mental retardation, choreoathetosis, and abnormal behavior (MRXS10). Linkage analysis in this family revealed a candidate region of 13.4 Mb between markers DXS1201 and DXS991 on Xp11; therefore, mutation analysis was performed by direct sequencing in most of the 135 annotated genes located in the region. The gene (HADH2) encoding L-3-hydroxyacyl-CoA dehydrogenase II displayed a sequence alteration (c.574 C-->A; p.R192R) in all patients and carrier females that was absent in unaffected male family members and could not be found in 2,500 control X chromosomes, including in those of 500 healthy males. The silent C-->A substitution is located in exon 5 and was shown by western blot to reduce the amount of HADH2 protein by 60%-70% in the patient. Quantitative in vivo and in vitro expression studies revealed a ratio of splicing transcript amounts different from those normally seen in controls. Apparently, the reduced expression of the wild-type fragment, which results in the decreased protein expression, rather than the increased amount of aberrant splicing fragments of the HADH2 gene, is pathogenic. Our data therefore strongly suggest that reduced expression of the HADH2 protein causes MRXS10, a phenotype different from that caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, which is a neurodegenerative disorder caused by missense mutations in this multifunctional protein.
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.
Analysis of strain-rate dependent mechanical behavior of single chondrocyte : a finite element study
Resumo:
Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.
Resumo:
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.
Resumo:
Recent studies suggest a high volume of sedentary behavior may be a risk factor for adverse health outcomes.1 However, few data exist on how this behavior is patterned (eg, does most sedentary behavior occur in a few long bouts or in many short bouts?) and whether sedentary patterns are relevant for health. We examined details of sedentary behavior among older women. Because physical activity is influenced by age, body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), and smoking status, we further examined sedentary behavior in relation to these characteristics.
Resumo:
Background Women with children are less likely to engage in adequate physical activity (PA) than women without children. This study aimed to evaluate the efficacy of two strategies for promoting increased PA among mothers of preschool-aged children, and to explore the mediators of any resulting change in PA behavior. Design Controlled intervention trial incorporating repeated data collection from 554 women, randomized to one of three experimental conditions. Intervention Group 1 served as a control, while women in Groups 2 and 3 were given print information about overcoming PA barriers. Women in Group 3 were also invited to discuss the development of local strategies for the promotion of PA among mothers of young children. The primary strategies included increasing partner support, social advocacy, and capacity building, and were implemented through collaboration among participants, researchers, and community organizations. Main Outcome Measures Adequate physical activity (PA), self-efficacy (SE) and partner support (PS). Results: Following the intervention, women in Group 3 were significantly more likely to meet guidelines for PA than controls (odds ratio [OR]=1.71, confidence interval [CI]=1.05–2.77)] after controlling for age and PA at baseline. After controlling for baseline PA, residualized change in SE (OR=1.86, CI=1.17–2.94) and PS (OR=2.29, CI=1.46–3.58) significantly predicted meeting guidelines. After controlling for residual change in PS and SE, the significant intervention effect was attenuated (Group 3 OR=1.40, CI=0.76–2.36), indicating that partner support and self-efficacy may be mediators of physical activity behavior change. Conclusions The findings indicate that community participation approaches that facilitate increased self-efficacy and partner support can be effective in increasing PA among mothers of young children.
Resumo:
Objective To evaluate a conceptual model linking parent physical activity (PA) orientations, parental support for PA, and PA behavior in preschool children. Methods Participants were 156 parent-child dyads from 13 child care centers in Queensland, Australia. Parents completed a questionnaire measuring parental PA, parental enjoyment of PA, perceived importance of PA, parental support for PA, parents' perceptions of competence, and child PA at home. MVPA while attending child care was measured via accelerometry. Data were collected between May and August of 2003. The relationships between the study variables and child PA were tested using observed variable path analysis. Results Parental PA and parents' perceptions of competence were positively associated with parental support for PA (β= 0.23 and 0.18, respectively, p<0.05). Parental support, in turn, was positively associated with child PA at home (β= 0.16, p<0.05), but not at child care (β= 0.01, p= 0.94). Parents' perceptions of competence was positively associated with both home-based and child care PA (β= 0.20 and 0.28, respectively, p<0.05). Conclusions Family-based interventions targeting preschoolers should include strategies to increase parental support for PA. Parents who perceive their child to have low physical competence should be encouraged to provide adequate support for PA. © 2009 Elsevier Inc.
Resumo:
Many countries conduct regular national time use surveys, some of which date back as far as the 1960s. Time use surveys potentially provide more detailed and accurate national estimates of the prevalence of sedentary and physical activity behavior than more traditional self-report surveillance systems. In this study, the authors determined the reliability and validity of time use surveys for assessing sedentary and physical activity behavior. In 2006 and 2007, participants (n = 134) were recruited from work sites in the Australian state of New South Wales. Participants completed a 2-day time use diary twice, 7 days apart, and wore an accelerometer. The 2 diaries were compared for test-retest reliability, and comparison with the accelerometer determined concurrent validity. Participants with similar activity patterns during the 2 diary periods showed reliability intraclass correlations of 0.74 and 0.73 for nonoccupational sedentary behavior and moderate/vigorous physical activity, respectively. Comparison of the diary with the accelerometer showed Spearman correlations of 0.57-0.59 and 0.45-0.69 for nonoccupational sedentary behavior and moderate/vigorous physical activity, respectively. Time use surveys appear to be more valid for population surveillance of nonoccupational sedentary behavior and health-enhancing physical activity than more traditional surveillance systems. National time use surveys could be used to retrospectively study nonoccupational sedentary and physical activity behavior over the past 5 decades.
Resumo:
The purpose of this study was to identify correlates of physical activity behavior in a sample of rural, predominantly African American youth. Three hundred sixty-one fifth-grade students from two rural counties in South Carolina (69% African American, median age = II years) completed a questionnaire designed to measure beliefs and social influences regarding physical activity, physical activity self-efficacy, perceived physical activity habits of family members and friends, and access to exercise and fitness equipment at home. After school physical activity and television watching were assessed using the Previous Day Physical Activity Recall (PDPAR). Students were classified as physically active according to a moderate physical activity standard: two or more 30-min blocks at an intensity of 3 METs (metabolic equivalents) or greater, and a vigorous physical activity standard: one or more 30-min blocks at an intensity of 6 METs or greater According to the moderate physical activity standard, 34.9% of students were classified as low-active. Multivariate analysis revealed age, gender television watching, and exercise equipment at home to be significant correlates of low activity status. According to the vigorous physical activity standard, 32.1 % of the students were classified as low-active. Multivariate analysis revealed age, gender television watching, and self-efficacy with respect to seeking support for physical activity to be significant correlates of low activity status. In summary, gender and the amount of television watching were found to be the most important correlates of physical activity in rural, predominantly African American youth.
Resumo:
Obesity rates are increasing in children of all ages, and reduced physical activity (PA) is a likely contributor to this trend. Little is known about the physical activity behavior of preschool-age children, or about the influence of preschool attendance on physical activity. Purpose The purpose of this study was to quantify the physical activity levels of children attending a center-based half-day preschool program. Methods Forty-two 3-to-5-year old children (Mean age = 4.0 ± 0.7, 54.8% Male, Mean BMI = 16.5 ± 5.5, Mean BMI %tile = 52.1 ± 33.5) from four class groups (two morning and two afternoon), wore an Actigraph 7164 accelerometer for the entire halfday program (including classroom learning experiences, snack and recess time) 2 times per week, for 10 weeks (20 activity monitoring records in total). Activity counts for each 5-sec interval were uploaded to a customized data reduction program to determine total counts, minutes of moderate PA (MPA) (3–5.9 METs), and minutes of vigorous PA (VPA) (> = 6 METs) per session. Counts were categorized as either MPA or VPA using the cutpoints developed by Sirard and colleagues (2001). Results Across the four 2.5 hour programs, the average MPA, VPA and total counts (× 103) were 12.4 ± 3.1 minutes, 18.3 ± 4.6 minutes, and 171.1 ± 29.7 counts, respectively. Thus, on average, children accumulated just over 12 minutes of moderateto-vigorous PA per hour of program attendance. The PA variables did not differ significantly by gender, weight status, or time of day. There were, however, significant age differences, with 3-year-olds exhibiting significantly less PA than their 4- and 5-year-old counterparts. Conclusions These results suggest that young children are relatively lowactive while attending preschool. Accordingly, interventions to increase movement opportunities during the preschool day are warranted.
Resumo:
Advanced grid stiffened composite cylindrical shell is widely adopted in advanced structures due to its exceptional mechanical properties. Buckling is a main failure mode of advanced grid stiffened structures in engineering, which calls for increasing attention. In this paper, the buckling response of advanced grid stiffened structure is investigated by three different means including equivalent stiffness model, finite element model and a hybrid model (H-model) that combines equivalent stiffness model with finite element model. Buckling experiment is carried out on an advanced grid stiffened structure to validate the efficiency of different modeling methods. Based on the comparison, the characteristics of different methods are independently evaluated. It is arguable that, by considering the defects of material, finite element model is a suitable numerical tool for the buckling analysis of advanced grid stiffened structures.
Resumo:
Despite considerable state investment and initiatives, binge drinking is still a major behavioral problem for policy makers and communities in many parts of the world. Furthermore, the practice of bingeing on alcohol seems to be spreading to young people in countries traditionally considered to have moderate drinking behaviors. Using a sociocultural lens and a framework of sociocultural themes from previous literature to develop propositions from their empirical study, the authors examine binge-drinking attitudes and behaviors among young people from high and moderate binge-drinking countries. The authors then make proposals regarding how policy makers can use social marketing more effectively to contribute to behavior change. Qualitative interviews were conducted with 91 respondents from 22 countries who were studying in two high binge-drinking countries at the time. The results show support for three contrasting sociocultural propositions that identify influences on binge drinking across these countries.
Resumo:
Polymeric nanocomposites have been shown to possess superior electrical insulation properties compared to traditional filled-resins. However, poor dispersion uniformity and insufficient filler-matrix interaction can adversely affect insulation properties of nanocomposites. In this study, the use of plasma polymerization is proposed to coat poly(ethylene oxide) polymer layers on silica nanoparticles. It is shown that better dispersion is achieved and C-O bonds are created between the surface functional groups of the nanoparticles and the host epoxy polymer. Electrical insulation tests demonstrate that the nanocomposites with plasma polymerized silica nanoparticles feature better resistance against electrical treeing, lower dielectric constant, and also mitigated space charge built-up. Therefore, plasma polymerization offers a promising fabrication technique to further improve the synthesis of nanocomposite dielectrics with superior electrical insulation properties.
Resumo:
In this study, atmospheric-pressure plasmas were applied to modify the surface of silane-coated silica nanoparticles. Subsequently nanocomposites were synthesized by incorporating plasma-treated nanoparticles into an epoxy resin matrix. Electrical testing showed that such novel dielectric materials obtained high partial discharge resistance, high dielectric breakdown strength, and enhanced endurance under highly stressed electric field. Through spectroscopic and microscopic analysis, we found surface groups of nanoparticles were activated and radicals were created after the plasma treatment. Moreover, a uniform dispersion of nanoparticles in nanocomposites was observed. It was expected that the improved dielectric performance of the nanocomposites can attribute to stronger chemical bonds formed between surface groups of plasma-treated nanoparticles and molecules in the matrix. This simple yet effective and environmentally friendly approach aims to synthesize the next generation of high-performance nanocomposite dielectric insulation materials for applications in high-voltage power systems.